High-Efficiency Metasurfaces with 2π Phase Control Based on Aperiodic Dielectric Nanoarrays
Abstract
:1. Introduction
2. Design of Meta-atoms and Methods
3. Metasurface Construction and Simulation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lin, R.J.; Su, V.C.; Wang, S.; Chen, M.K.; Chung, T.L.; Chen, Y.H.; Kuo, H.Y.; Chen, J.W.; Chen, J.; Huang, Y.T.; et al. Achromatic Metalens Array for Full-Colour Light-Field Imaging. Nat. Nanotechnol. 2019, 14, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillai, S.; Catchpole, K.R.; Trupke, T.; Green, M.A. Surface Plasmon Enhanced Silicon Solar Cells. Br. J. Appl. Phys. 2007, 101, 093105. [Google Scholar] [CrossRef]
- Deng, Z.L.; Zhang, S.; Wang, G.P. A Facile Grating Approach Towards Broadband, Wide-Angle and High-Efficiency Holographic Metasurfaces. Nanoscale 2016, 8, 1588–1594. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wu, J.; Guo, S. The Generation of Three-Dimensional Curved Beams Based on Holographic Metasurface. Opt. Express 2018, 26, 22348–22355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Shang, S.H.; Li, M.N.; Wu, S.Y.; Zhu, Q.S.; Wu, M.H.; Teng, B.H. Fdtd Simulation: Refractive Index and Single-Object Sensing Using a Whispering-Gallery-Modes Microring Resonator. J. Lightw. Technol. 2018, 36, 1775–1781. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Q.; Liu, L.; Liu, Y.; Rosales-Guzmán, C.; Qiu, C.W. Manipulation of Orbital-Angular-Momentum Spectrum Using Pinhole Plates. Phys. Rev. Appl. 2019, 12, 064007. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Kenney, M.; Su, X.; Xu, N.; Ouyang, C.; Shi, Y.; Han, J.; Zhang, W.; Zhang, S. Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude. Adv. Mat. 2014, 26, 5031–5036. [Google Scholar] [CrossRef]
- Shao, T.; Sun, L.; Li, W.; Zhou, X.; Wang, F.; Huang, J.; Ye, X.; Yang, L.; Zheng, W. Understanding the Role of Fluorine-Containing Plasma on Optical Properties of Fused Silica Optics During the Combined Process of Rie and Dce. Opt. Express 2019, 27, 23307–23320. [Google Scholar] [CrossRef]
- Sun, L.; Liu, H.; Huang, J.; Ye, X.; Xia, H.; Li, Q.; Jiang, X.; Wu, W.; Yang, L.; Zheng, W. Reaction Ion Etching Process for Improving Laser Damage Resistance of Fused Silica Optical Surface. Opt. Express 2016, 24, 199–211. [Google Scholar] [CrossRef]
- Luo, J.; Yang, Y.; Yao, Z.; Lu, W.; Hou, B.; Hang, Z.H.; Chan, C.T.; Lai, Y. Ultratransparent Media and Transformation Optics with Shifted Spatial Dispersions. Phys. Rev. Lett. 2016, 117, 223901. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.O.; Zhao, J.; Feng, Y. Active Impedance Metasurface with Full 360° Reflection Phase Tuning. Sci. Rep. 2013, 3, 3059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission. Nat. Nanotechnol. 2015, 10, 937. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.F.; Zhu, A.Y.; Paniagua-Domínguez, R.; Fu, Y.H.; Luk’yanchuk, B.; Kuznetsov, A.I. High-Transmission Dielectric Metasurface with 2π Phase Control at Visible Wavelengths. Laser & Photonics Rev. 2015, 9, 412–418. [Google Scholar]
- Pun, E.Y.B.; Wong, P.W.H.; Li, G.; Chen, S.; Pholchai, N.; Reineke, B.; Cheah, K.W.; Zentgraf, T.; Zhang, S. Nonlinear Metasurface for Continuous Phase Control. In Proceedings of the 2016 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Beijing, China, 27–29 July 2016. [Google Scholar]
- Wang, W.; Guo, C.; Tang, J.; Zhao, Z.; Wang, J.; Sun, J.; Shen, F.; Guo, K.; Guo, Z. High-Efficiency and Broadband near-Infrared Bi-Functional Metasurface Based on Rotary Different-Size Silicon Nanobricks. Nanomaterials 2019, 9, 1744. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, W.; Moitra, P.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation. Nano Lett. 2014, 14, 1394–1399. [Google Scholar] [CrossRef]
- Chen, W.T.; Yang, K.Y.; Wang, C.M.; Huang, Y.W.; Sun, G.; Chiang, I.D.; Liao, C.Y.; Hsu, W.L.; Lin, H.T.; Sun, S.; et al. High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images. Nano Lett. 2014, 14, 25–30. [Google Scholar] [CrossRef]
- Shibanuma, T.; Maier, S.A.; Albella, P. Polarization Control of High Transmission/Reflection Switching by All-Dielectric Metasurfaces. Appl. Phys. Lett. 2018, 112, 063103. [Google Scholar] [CrossRef]
- Huang, Y.W.; Chen, W.T.; Tsai, W.Y.; Wu, P.C.; Wang, C.M.; Sun, G.; Tsai, D.P. Aluminum Plasmonic Multicolor Meta-Hologram. Nano Lett. 2015, 15, 3122–3127. [Google Scholar] [CrossRef]
- Pors, A.; Nielsen, M.G.; Eriksen, R.L.; Bozhevolnyi, S.I. Bozhevolnyi. Broadband Focusing Flat Mirrors Based on Plasmonic Gradient Metasurfaces. Nano Lett. 2013, 13, 829–834. [Google Scholar] [CrossRef]
- Peyskens, F.; Subramanian, A.Z.; Neutens, P.; Dhakal, A.; Van Dorpe, P.; Le Thomas, N.; Baets, R. Bright and Dark Plasmon Resonances of Nanoplasmonic Antennas Evanescently Coupled with a Silicon Nitride Waveguide. Opt. Express 2015, 23, 3088–3101. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, Z.; Guo, C.; Guo, K.; Guo, Z. Spin-Selected Dual-Wavelength Plasmonic Metalenses. Nanomaterials 2019, 9, 761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miscuglio, M.; Borys, N.J.; Spirito, D.; Martín-García, B.; Zaccaria, R.P.; Weber-Bargioni, A.; Schuck, P.J.; Krahne, R. Planar Aperiodic Arrays as Metasurfaces for Optical near-Field Patterning. ACS Nano 2019, 13, 5646–5654. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, Z.; Liu, J.; Cheng, J.; Zhou, Y.; Xiao, L.; Chen, K. Ultra-Narrow Band Mid-Infrared Perfect Absorber Based on Hybrid Dielectric Metasurface. Nanomaterials 2019, 9, 1350. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, W.; Zhu, Z.; Yuan, X.; Qin, S. Strong Field Enhancement and Light-Matter Interactions with All-Dielectric Metamaterials Based on Split Bar Resonators. Opt. Express 2014, 22, 30889–30898. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Karabiyik, M.; Pala, N. Inducing Multiple Fano Resonant Modes in Split Concentric Nanoring Resonator Dimers for Ultraprecise Sensing. J. Opt. 2015, 17, 085104. [Google Scholar] [CrossRef] [Green Version]
- Semouchkina, E.; Duan, R.; Semouchkin, G.; Pandey, R. Sensing Based on Fano-Type Resonance Response of All-Dielectric Metamaterials. Sensors 2015, 15, 9344–9359. [Google Scholar] [CrossRef] [Green Version]
- Decker, M.; Staude, I.; Falkner, M.; Dominguez, J.; Neshev, D.N.; Brener, I.; Pertsch, T.; Kivshar, Y.S. High-Efficiency Dielectric Huygens’ Surfaces. Adv. Opt. Mat. 2015, 3, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Shalaev, M.I.; Sun, J.; Tsukernik, A.; Pandey, A.; Nikolskiy, K.; Litchinitser, N.M. High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode. Nano Lett. 2015, 15, 6261–6266. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Jiang, H.; Liu, B.; Song, J.; Jiang, Y.; Tang, C.; Li, J. Dielectric Huygens’ Metasurface for High-Efficiency Hologram Operating in Transmission Mode. Sci. Rep. 2016, 6, 30613. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Kim, M.; Wong, A.M.; Eleftheriades, G.V. Eleftheriades. Huygens’ Metasurfaces from Microwaves to Optics a Review. Nanophotonics 2018, 7, 25. [Google Scholar] [CrossRef]
- Kim, M.; Wong, A.M.; Eleftheriades, G.V. Optical Huygens’ Metasurfaces with Independent Control of the Magnitude and Phase of the Local Reflection Coefficients. Phys. Rev. X 2014, 4, 041042. [Google Scholar] [CrossRef]
- Sun, Z.; Sima, B.; Zhao, J.; Feng, Y. Electromagnetic Polarization Conversion Based on Huygens’ Metasurfaces with Coupled Electric and Magnetic Resonances. Opt. Express 2019, 27, 11006–11017. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Yang, L.; Jin, Z.; Liu, J. Multifunctional Au-Coated Tio2 Nanotube Arrays as Recyclable Sers Substrates for Multifold Organic Pollutants Detection. Adv. Funct. Mater. 2010, 20, 2815–2824. [Google Scholar] [CrossRef]
- Hsiao, H.H.; Chu, C.H.; Tsai, D.P. Fundamentals and Applications of Metasurfaces. Small Methods 2017, 1, 1600064. [Google Scholar] [CrossRef] [Green Version]
- Arbabi, A.; Briggs, R.M.; Horie, Y.; Bagheri, M.; Faraon, A. Efficient Dielectric Metasurface Collimating Lenses for Mid-Infrared Quantum Cascade Lasers. Opt. Express 2015, 23, 33310–33317. [Google Scholar] [CrossRef]
- Arbabi, E.; Arbabi, A.; Kamali, S.M.; Horie, Y.; Faraji-Dana, M.; Faraon, A. Mems-Tunable Dielectric Metasurface Lens. Nat. Commun. 2018, 9, 812. [Google Scholar] [CrossRef] [Green Version]
- Colburn, S.; Zhan, A.; Majumdar, A. Tunable Metasurfaces Via Subwavelength Phase Shifters with Uniform Amplitude. Sci. Rep. 2017, 7, 40174. [Google Scholar] [CrossRef]
- Stadler, I.; Lanzafame, R.J.; Evans, R.; Narayan, V.; Dailey, B.; Buehner, N.; Naim, J.O. 830-Nm Irradiation Increases the Wound Tensile Strength in a Diabetic Murine Model. Lasers Surg. Med. Off. J. Am. Soc. Laser Med. Surg. 2001, 28, 220–226. [Google Scholar] [CrossRef]
- Hagiwara, S.; Iwasaka, H.; Okuda, K.; Noguchi, T. Gaalas (830 Nm) Low-Level Laser Enhances Peripheral Endogenous Opioid Analgesia in Rats. Lasers Surg. Med. 2007, 39, 797–802. [Google Scholar] [CrossRef]
- Chow, R.T.; Heller, G.Z.; Barnsley, L. The Effect of 300 Mw, 830 Nm Laser on Chronic Neck Pain: A Double-Blind, Randomized, Placebo-Controlled Study. Pain 2006, 124, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z. Gated Graphene Island-Enabled Tunable Charge Transfer Plasmon Terahertz Metamodulator. Nanoscale 2019, 11, 8091–8095. [Google Scholar] [CrossRef] [PubMed]
- Sönnichsen, C.; Franzl, T.; Wilk, T.; Von Plessen, G.; Feldmann, J. Plasmon Resonances in Large Noble-Metal Clusters. New J. Phys. 2002, 4, 93. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, S.; Tang, F.; Ye, X.; Li, Q.; Li, H.; Wu, J.; Wu, Y.; Chen, J.; Zhang, Z.; Yang, Y.; et al. High-Efficiency Metasurfaces with 2π Phase Control Based on Aperiodic Dielectric Nanoarrays. Nanomaterials 2020, 10, 250. https://doi.org/10.3390/nano10020250
Shang S, Tang F, Ye X, Li Q, Li H, Wu J, Wu Y, Chen J, Zhang Z, Yang Y, et al. High-Efficiency Metasurfaces with 2π Phase Control Based on Aperiodic Dielectric Nanoarrays. Nanomaterials. 2020; 10(2):250. https://doi.org/10.3390/nano10020250
Chicago/Turabian StyleShang, Sihui, Feng Tang, Xin Ye, Qingzhi Li, Hailiang Li, Jingjun Wu, Yiman Wu, Jun Chen, Zhihong Zhang, Yuanjie Yang, and et al. 2020. "High-Efficiency Metasurfaces with 2π Phase Control Based on Aperiodic Dielectric Nanoarrays" Nanomaterials 10, no. 2: 250. https://doi.org/10.3390/nano10020250
APA StyleShang, S., Tang, F., Ye, X., Li, Q., Li, H., Wu, J., Wu, Y., Chen, J., Zhang, Z., Yang, Y., & Zheng, W. (2020). High-Efficiency Metasurfaces with 2π Phase Control Based on Aperiodic Dielectric Nanoarrays. Nanomaterials, 10(2), 250. https://doi.org/10.3390/nano10020250