Microfluidic-Assisted Fabrication of Monodisperse Core–Shell Microcapsules for Pressure-Sensitive Adhesive with Enhanced Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Microfluidic Device
2.3. Characterization of Droplets and Microcapsules
2.4. Leakage Measurement of Microcapsules
2.5. Mechanical Strength Measurement of Microcapsules
2.6. Thermogravimetric Analysis
2.7. Viscosity Measurement
2.8. Bonding Strength Measurement
3. Results
3.1. Double-Emulsion Droplets Formation in Microfluidic Devices
3.2. Microcapsule Characterization
3.3. Bonding Performance of the Microcapsule-Based PSA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chang, T.M. Semipermeable microcapsules. Science 1964, 146, 524–525. [Google Scholar] [CrossRef] [PubMed]
- MarketsandMarkets, Microencapsulation Market by Technology (Spray, Emulsion, Dripping), Core Material (Pharma & Healthcare Drugs, PCM, Food Additives, Fragrances), Application (Pharma, Household, Agrochemicals, Textiles), Shell Material, and Region—Global Forecast to 2023. 2019, pp. 1–202. Available online: https://www.marketsandmarkets.com/Market-Reports/microencapsulation-market-83597438.html (accessed on 6 February 2020).
- Zhang, H.; Zhang, X.; Bao, C.L.; Li, X.; Sun, D.W.; Duan, F.; Friedrich, K.; Yang, J.L. Direct microencapsulation of pure polyamine by integrating microfluidic emulsion and interfacial polymerization for practical self- healing materials. J. Mater. Chem. A 2018, 6, 24092–24099. [Google Scholar] [CrossRef]
- Wong, C.Y.; Al-Salami, H.; Dass, C.R. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int. J. Pharm. 2018, 537, 223. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Choi, C.H.; Abbaspourrad, A.; Wesner, C.; Caggioni, M.; Zhu, T.; Weitz, D.A. Encapsulation and Enhanced Retention of Fragrance in Polymer Microcapsules. ACS Appl. Mater. Interfaces 2016, 8, 4007–4013. [Google Scholar] [CrossRef]
- Li, X.G.; Sun, L.Y.; Sui, H.; He, L.; Yuan, W.; Han, Z.W. A Novel Polymeric Adsorbent Embedded with Phase Change Materials (PCMs) Microcapsules: Synthesis and Application. Nanomaterials 2019, 9, 736. [Google Scholar] [CrossRef] [Green Version]
- Esser-Kahn, A.P.; Odom, S.A.; Sottos, N.R.; White, S.R.; Moore, J.S. Triggered Release from Polymer Capsules. Macromolecules 2011, 44, 5539–5553. [Google Scholar] [CrossRef]
- MarketsandMarkets, Industrial Adhesives Market by Type (Water-based Adhesives, Solvent-based Adhesives, Hot-Melt Adhesives, Pressure Sensitive Adhesives), Material Base (Synthetic, Natural), Composition, End-Use Industry, and Region—Global Forecast to 2021. 2016, pp. 1–194. Available online: https://www.marketsandmarkets.com/Market-Reports/industrial-adhesive-market-168855783.html (accessed on 6 February 2020).
- Aran-Ais, F.; Perez-Liminana, M.A.; Sanchez-Navarro, M.M.; Orgiles-Barcelo, C. Developments in Microencapsulation Technology to Improve Adhesive Formulations. J. Adhesion 2012, 88, 391–405. [Google Scholar] [CrossRef]
- Minami, H.; Kanamori, H.; Hata, Y.; Okubo, M. Preparation of microcapsules containing a curing agent for epoxy resin by polyaddition reaction with the self-assembly of phase-separated polymer method in an aqueous dispersed system. Langmuir 2008, 24, 9254–9259. [Google Scholar] [CrossRef]
- McFarland, B.; Pojman, J.A. Effects of shell crosslinking on polyurea microcapsules containing a free—radical initiator. J. Appl. Polym. Sci. 2015, 132, 42408. [Google Scholar] [CrossRef]
- Empereur, J.; Belgacem, M.N.; Chaussy, D. Silicone liner-free pressure-sensitive adhesive labels. Macromol. Mater. Eng. 2008, 293, 167–172. [Google Scholar] [CrossRef]
- Dunky, M. Urea-formaldehyde (UF) adhesive resins for wood. Int. J. Adhes. Adhes. 1998, 18, 95–107. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, H.; Xu, S.; Liu, F.; Xie, J.; Qi, J. Significant evaluation of three factors affecting the pre-curing behavior of urea formaldehyde resin: Temperature, solid content, and pH. J. Therm. Anal. Calorim. 2018, 133, 1463–1470. [Google Scholar] [CrossRef]
- Wang, Y.; Angelatos, A.S.; Caruso, F. Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly. Chem. Mater. 2008, 20, 848–858. [Google Scholar] [CrossRef]
- Atkin, R.; Davies, P.; Hardy, J.; Vincent, B. Preparation of aqueous core/polymer shell microcapsules by internal phase separation. Macromolecules 2004, 37, 7979–7985. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.S.; Jang, J.; Bae, J. A Review of Fabrication Methods and Applications of Novel Tailored Microcapsules. Curr. Org. Chem. 2013, 17, 3–13. [Google Scholar] [CrossRef]
- Zhang, J.; Coulston, R.J.; Jones, S.T.; Geng, J.; Scherman, O.A.; Abell, C. One-Step Fabrication of Supramolecular Microcapsules from Microfluidic Droplets. Science 2012, 335, 690–694. [Google Scholar] [CrossRef]
- Chu, L.Y.; Utada, A.S.; Shah, R.K.; Kim, J.W.; Weitz, D.A. Controllable monodisperse multiple emulsions. Angew. Chem. Int. Ed. 2007, 46, 8970–8974. [Google Scholar] [CrossRef]
- Shui, L.L.; Mugele, F.; Van den Berg, A.; Eijkel, J.C.T. Geometry-controlled droplet generation in head-on microfluidic devices. Appl. Phys. Lett. 2008, 93, 153113. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Le-The, H.; Wang, Z.K.; Li, H.; Jin, M.L.; Van den Berg, A.; Zhou, G.F.; Segerink, L.I.; Shui, L.L.; Eijkel, J.C.T. Microfluidics Assisted Fabrication of Three-Tier Hierarchical Microparticles for Constructing Bioinspired Surfaces. ACS Nano 2019, 13, 3638–3648. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Jin, M.; Gong, Y.; Li, H.; Wu, S.; Zhang, Z.; Zhou, G.; Shui, L.; Eijkel, J.C.T.; Van den Berg, A. Continuous fabrication of microcapsules with controllable metal covered nanoparticle arrays using droplet microfluidics for localized surface plasmon resonance. Lab Chip 2017, 17, 1970–1979. [Google Scholar] [CrossRef]
- Utada, A.S.; Chu, L.Y.; Fernandez-Nieves, A.; Link, D.R.; Holtze, C.; Weitz, D.A. Dripping, jetting, drops, and wetting: The magic of microfluidics. Mrs Bull. 2007, 32, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Li, L.H.; Yan, Z.B.; Jin, M.L.; You, X.S.; Xie, S.T.; Liu, Z.P.; Van den Berg, A.; Eijkel, J.C.T.; Shui, L.L. In-Channel Responsive Surface Wettability for Reversible and Multiform Emulsion Droplet Preparation and Applications. ACS Appl. Mater. Interfaces 2019, 11, 16934–16943. [Google Scholar] [CrossRef] [PubMed]
- Sujit S, D.; Alireza, A.; Esther, A.; Jing, F.; Shin-Hyun, K.; Mark, R.; Ho Cheung, S.; Bingjie, S.; Andrew S, U.; Maike, W. 25th anniversary article: Double emulsion templated solid microcapsules: Mechanics and controlled release. Adv. Mater. 2014, 26, 2205–2218. [Google Scholar]
- Köster, S.; Angilè, F.E.; Duan, H.; Agresti, J.J.; Wintner, A.; Schmitz, C.; Rowat, A.C.; Merten, C.A.; Pisignano, D.; Griffiths, A.D.; et al. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 2008, 8, 1110–1115. [Google Scholar]
- Chen, P.W.; Cadisch, G.; Studart, A.R. Encapsulation of Aliphatic Amines Using Microfluidics. Langmuir 2014, 30, 2346–2350. [Google Scholar] [CrossRef]
- Zou, Y.Y.; Song, J.; You, X.S.; Yao, J.Y.; Xie, S.T.; Jin, M.L.; Wang, X.; Yan, Z.B.; Zhou, G.F.; Shui, L.L. Interfacial Complexation Induced Controllable Fabrication of Stable Polyelectrolyte Microcapsules Using All-Aqueous Droplet Microfluidics for Enzyme Release. ACS Appl. Mater. Interfaces 2019, 11, 21227–21238. [Google Scholar] [CrossRef] [PubMed]
- Shui, L.L.; Van den Berg, A.; Eijkel, J.C.T. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel. Lab Chip 2009, 9, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Shui, L.L.; Van den Berg, A.; Eijkel, J.C.T. Capillary instability, squeezing, and shearing in head-on microfluidic devices. J. Appl. Phys. 2009, 106, 124305. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.H.; Lee, H.; Abbaspourrad, A.; Kim, J.H.; Fan, J.; Caggioni, M.; Wesner, C.; Zhu, T.; Weitz, D.A. Triple Emulsion Drops with An Ultrathin Water Layer: High Encapsulation Efficiency and Enhanced Cargo Retention in Microcapsules. Adv. Mater. 2016, 28, 3340–3344. [Google Scholar] [CrossRef]
- Liu, L.; Wu, F.; Ju, X.J.; Xie, R.; Wang, W.; Niu, C.H.; Chu, L.Y. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions. J. Colloid Interface Sci. 2013, 404, 85–90. [Google Scholar] [CrossRef]
- Zhang, M.-J.; Wang, W.; Xie, R.; Ju, X.-J.; Liu, L.; Gu, Y.-Y.; Chu, L.-Y. Microfluidic fabrication of monodisperse microcapsules for glucose-response at physiological temperature. Soft Matter 2013, 9, 4150–4159. [Google Scholar] [CrossRef]
- Hennequin, Y.; Pannacci, N.; de Torres, C.P.; Tetradis-Meris, G.; Chapuliot, S.; Bouchaud, E.; Tabeling, P. Synthesizing microcapsules with controlled geometrical and mechanical properties with microfluidic double emulsion technology. Langmuir 2009, 25, 7857–7861. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Zhang, Z. Mechanical strength of microcapsules made of different wall materials. Int. J. Pharm. 2002, 242, 307–311. [Google Scholar] [CrossRef]
- Malkoçoğlu, A. Machining properties and surface roughness of various wood species planed in different conditions. Build. Environ. 2007, 42, 2562–2567. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, X.; Wang, B.; Xie, S.; Li, L.; Lu, H.; Jin, M.; Wang, X.; Zhou, G.; Shui, L. Microfluidic-Assisted Fabrication of Monodisperse Core–Shell Microcapsules for Pressure-Sensitive Adhesive with Enhanced Performance. Nanomaterials 2020, 10, 274. https://doi.org/10.3390/nano10020274
You X, Wang B, Xie S, Li L, Lu H, Jin M, Wang X, Zhou G, Shui L. Microfluidic-Assisted Fabrication of Monodisperse Core–Shell Microcapsules for Pressure-Sensitive Adhesive with Enhanced Performance. Nanomaterials. 2020; 10(2):274. https://doi.org/10.3390/nano10020274
Chicago/Turabian StyleYou, Xiangshen, Bingsheng Wang, Shuting Xie, Lanhui Li, Han Lu, Mingliang Jin, Xin Wang, Guofu Zhou, and Lingling Shui. 2020. "Microfluidic-Assisted Fabrication of Monodisperse Core–Shell Microcapsules for Pressure-Sensitive Adhesive with Enhanced Performance" Nanomaterials 10, no. 2: 274. https://doi.org/10.3390/nano10020274
APA StyleYou, X., Wang, B., Xie, S., Li, L., Lu, H., Jin, M., Wang, X., Zhou, G., & Shui, L. (2020). Microfluidic-Assisted Fabrication of Monodisperse Core–Shell Microcapsules for Pressure-Sensitive Adhesive with Enhanced Performance. Nanomaterials, 10(2), 274. https://doi.org/10.3390/nano10020274