Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Continuous Flow System with Programmable Sampling, ICP-OES or ICP-MS Analysis
2.2. Continuous Flow System with Ramped Flow-Rates to Ensure Out-Of-Equilibrium Conditions
- Cumulative rate: The amount of dissolved BaSO4 at each time point Mion(T) is expressed as a fraction of the initial mass loading (M0 = 100%) and cumulated from all samplings with concentration ci, flow Vi, and sampling interval ti, and includes the stoichiometry of BaSO4:The rate k incorporates the Brunauer–Emmett–Teller (BET) value [33]. The BET method uses adsorption of gases at constant temperature to determine the surface area of particles, in order to report results with a focus on composition or coating dependence, instead of size dependence. The conventional units of k are ng/cm²/h [30,34]. We typically determine k by the number of cumulated ions during a specific time interval at the end of the test.
- Curve fitting: To verify first-order dissolution kinetics [34], the cumulative dissolved BaSO4 mass is expressed as an inverse relationship, i.e., decreasing solid retained BaSO4 mass (Mion(T) – M0)/M0, and plotted against time on a semi-log scale. The dissolution rate—expressed as a fraction per hour —is calculated from the slope of this line and then converted to percent per day using the total system’s available starting mass. Dissolution rate and half-time (t’1/2, 50% dissolved) are inversely related and can be expressed in two alternative metrics (below) as given for first-order modeling in ISO 19057:2017 [29,34]. The BaSO4 dissolution half-time allows direct extrapolation and comparison to the in vivo dissolution t1/2 of inhaled BaSO4, which is derived from the total in vivo t1/2:
- Instantaneous rates: For each sampling interval Δt, the instantaneous dissolution rate k was constructed as:We approximated the instantaneous surface area and, thus, ignored changes of the size distribution and shape (see Discussion). Elsewhere [14] we explored modeling of SA(t) via the assumption of shrinking spheres [29,34], which does not apply for particles with a tendency to undergo morphological transformation processes, such as BaSO4.
2.3. Terminology of Modeling Nanomaterial Dissolution
- radius of a particle in cm with
- : volume of a particle
- : area of a particle
- : rate constant at which particle dissolves in ng/cm²/h
- : density of particle g/cm³
- : time in h
- : ions present in the solution in g
- : mass of fluid in the flow cell, in g
- : flow of fluid per time, in g/h.
- : concentration of particles at time t in g/L
- : concentration of ions at time t in g/L
- : number of NPs present in the solution per liter at in 1/L.
3. Results
4. Discussion
4.1. Materials
4.2. Method
- The model confirms that the prefactor is specific to the solubility limit of the ions in the medium, but independent of the size R of the particles.
- The model confirms that the slope of the inverse relationship to SA/V is universal for all substances, all sizes thereof, and all medium compositions. This aspect is proven here with experimental data on pulmonary lysosomal dissolution but is predicted as well for gastro-intestinal dissolution.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ministère de l’Environnement. Éléments Issus des Déclarations des Substances à L’état Nanoparticulaire; Exercice 2015; Ministère de l’Environnement: Paris, France, 2015.
- Wohlleben, W.; Punckt, C.; Aghassi-Hagmann, J.; Siebers, F.; Menzel, F.; Esken, D.; Drexel, C.P.; Zoz, H.; Benz, H.U.; Weier, A. Nanoenabled Products: Categories, Manufacture, and Applications. Metrol. Stand. Nanotechnol. Protoc. Ind. Innov. 2017, 409–464. [Google Scholar] [CrossRef]
- Arts, J.H.; Hadi, M.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Petry, T.; Sauer, U.G.; Warheit, D.; et al. A critical appraisal of existing concepts for the grouping of nanomaterials. Regul Toxicol Pharm. 2014, 70, 492–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arts, J.H.E.; Hadi, M.; Irfan, M.-A.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Petry, T.; Sauer, U.G.; et al. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul. Toxicol. Pharmacol. 2015, 71, S1–S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oomen, A.G.; Bleeker, E.A.; Bos, P.M.; van Broekhuizen, F.; Gottardo, S.; Groenewold, M.; Hristozov, D.; Hund-Rinke, K.; Irfan, M.-A.; Marcomini, A. Grouping and read-across approaches for risk assessment of nanomaterials. Int. J. Environ. Res. Public Health 2015, 12, 13415–13434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commission, E. Commission Regulation (EU) 2018/1881 of 3 December 2018 amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards Annexes I, III,VI, VII, VIII, IX, X, XI, and XII to address nanoforms of substances. Comm. Regul. (EU) 2018/1881 2018, 308, 1–20. [Google Scholar]
- Oberdörster, G. Lung clearance of inhaled insoluble and soluble particles. J. Aerosol Med. 1988, 1, 289–330. [Google Scholar] [CrossRef]
- Ferin, J. Pulmonary retention and clearance of particles. Toxicol. Lett. 1994, 72, 121–125. [Google Scholar] [CrossRef]
- Oberd”rster, G.; Ferin, J.; Gelein, R.; Soderholm, S.C.; Finkelstein, J. Role of the Alveolar Macrophage in Lung Injury—Studies with Ultrafine Particles. Environ. Health Perspect. 1992, 97, 193–199. [Google Scholar]
- Ferin, J.; Oberdorster, G.; Penney, D.P. Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol. 1992, 6, 535–542. [Google Scholar] [CrossRef]
- ECHA. Appendix for Nanoforms Applicable to the Guidance on Registration and Substance Identification; ECHA: Helsinki, Finland, 2019. [Google Scholar]
- Oberdörster, G.; Kuhlbusch, T.A.J. In vivo effects: Methodologies and biokinetics of inhaled nanomaterials. NanoImpact 2018, 10, 38–60. [Google Scholar] [CrossRef]
- Koltermann-Jülly, J.; Keller, J.G.; Vennemann, A.; Werle, K.; Müller, P.; Ma-Hock, L.; Landsiedel, R.; Wiemann, M.; Wohlleben, W. Addendum to “Abiotic dissolution rates of 24 (nano)forms of 6 substances compared to macrophage-assisted dissolution and in vivo pulmonary clearance: Grouping by biodissolution and transformation” [NanoImpact 2018, 12, 29–41]. NanoImpact 2019, 100154. [Google Scholar] [CrossRef]
- Koltermann-Jülly, J.; Keller, J.G.; Vennemann, A.; Werle, K.; Müller, P.; Ma-Hock, L.; Landsiedel, R.; Wiemann, M.; Wohlleben, W. Abiotic dissolution rates of 24 (nano)forms of 6 substances compared to macrophage-assisted dissolution and in vivo pulmonary clearance: Grouping by biodissolution and transformation. NanoImpact 2018, 12, 29–41. [Google Scholar] [CrossRef]
- Kent, R.D.; Vikesland, P.J. Dissolution and Persistence of Copper-Based Nanomaterials in Undersaturated Solutions with Respect to Cupric Solid Phases. Environ. Sci. Technol. 2016, 50, 6772–6781. [Google Scholar] [CrossRef] [PubMed]
- Bove, P.; Malvindi, M.A.; Kote, S.S.; Bertorelli, R.; Summa, M.; Sabella, S. Dissolution test for risk assessment of nanoparticles: A pilot study. Nanoscale 2017, 9, 6315–6326. [Google Scholar] [CrossRef] [Green Version]
- International Agency for Research on Cancer (IARC). Man-made Mineral Fibres and Radon; World Health Organization: Lyon, France, 1988. [Google Scholar]
- Donaldson, K. Biological activity of respirable industrial fibres treated to mimic residence in the lung. Toxicol. Lett. 1994, 72, 299–305. [Google Scholar] [CrossRef]
- Guldberg, M.; Christensen, V.R.; Krøis, W.; Sebastian, K. Method for determining in-vitro dissolution rates of man-made vitreous fibres. Glass Sci. Technol. 1995, 68, 181–187. [Google Scholar]
- Thelohan, S.; De Meringo, A. In vitro dynamic solubility test: Influence of various parameters. Environ. Health Perspect. 1994, 102, 91. [Google Scholar]
- Landsiedel, R.; Sauer, U.G.; Ma-Hock, L.; Schnekenburger, J.; Wiemann, M. Pulmonary toxicity of nanomaterials: A critical comparison of published in vitro assays with in vivo inhalation or instillation studies. Nanomedicine 2014, 9, 2557–2585. [Google Scholar] [CrossRef]
- Gosens, I.; Cassee, F.R.; Zanella, M.; Manodori, L.; Brunelli, A.; Costa, A.L.; Bokkers, B.G.H.; de Jong, W.H.; Brown, D.; Hristozov, D.; et al. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology 2016, 10, 1084–1095. [Google Scholar] [CrossRef]
- Keller, J.G.; Graham, U.M.; Koltermann-Jülly, J.; Gelein, R.; Ma-Hock, L.; Landsiedel, R.; Wiemann, M.; Oberdörster, G.; Elder, A.; Wohlleben, W. Predicting dissolution and transformation of inhaled nanoparticles in the lung using abiotic flow cells: The case of barium sulfate. Sci. Rep. 2020, 10, 458. [Google Scholar] [CrossRef]
- Wohlleben, W.; Hellack, B.; Nickel, C.; Herrchen, M.; Hund-Rinke, K.; Kettler, K.; Riebeling, C.; Haase, A.; Funk, B.; Kühnel, D. The nanoGRAVUR framework to group (nano) materials for their occupational, consumer, environmental risks based on a harmonized set of material properties, applied to 34 case studies. Nanoscale 2019, 11, 17637–17654. [Google Scholar] [CrossRef] [PubMed]
- Babick, F.; Mielke, J.; Wohlleben, W.; Weigel, S.; Hodoroaba, V.-D. How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. J. Nanoparticle Res. 2016, 18, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wohlleben, W.; Mielke, J.; Bianchin, A.; Ghanem, A.; Freiberger, H.; Rauscher, H.; Gemeinert, M.; Hodoroaba, V.-D. Reliable nanomaterial classification of powders using the volume-specific surface area method. J. Nanoparticle Res. 2017, 19, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arts, J.H.; Irfan, M.-A.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Neubauer, N.; Petry, T.; Sauer, U.G. Case studies putting the decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) into practice. Regul. Toxicol. Pharmacol. 2016, 76, 234–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landsiedel, R.; Ma-Hock, L.; van Ravenzwaay, B.; Schulz, M.; Wiench, K.; Champ, S.; Schulte, S.; Wohlleben, W.; Oesch, F. Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology 2010, 4, 364–381. [Google Scholar] [CrossRef]
- ISO/TR19057. Nanotechnologies—Use and Application of Acellular in Vitro Tests and Methodologies to Assess Nanomaterial Biodurability; ISO/TR, 19057; International Organisation for Standardization: Geneva, Switzerlannd, 2007. [Google Scholar]
- International Agency for Research on Cancer (IARC). Man-Made Vitreous Fibres; World Health Organization: Lyon France, 2002; pp. 1–433. [Google Scholar]
- Wohlleben, W.; Waindok, H.; Daumann, B.; Werle, K.; Drum, M.; Egenolf, H. Composition, Respirable Fraction and Dissolution Rate of 24 Stone Wool MMVF with their Binder. Part. Fibre Toxicol. 2017, 14, 29. [Google Scholar] [CrossRef] [Green Version]
- Stefaniak, A.B.; Guilmette, R.A.; Day, G.A.; Hoover, M.D.; Breysse, P.N.; Scripsick, R.C. Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution. Toxicol. In Vitro 2005, 19, 123–134. [Google Scholar] [CrossRef]
- Naderi, M. Surface Area: Brunauer–Emmett–Teller (BET). In Progress in Filtration and Separation; Elsevier: London, UK, 2015; pp. 585–608. [Google Scholar]
- Utembe, W.; Potgieter, K.; Stefaniak, A.B.; Gulumian, M. Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials. Part. Fibre Toxicol. 2015, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Yamada, N. Kinetic energy discrimination in collision/reaction cell ICP-MS: Theoretical review of principles and limitations. Spectrochim. Acta Part B At. Spectrosc. 2015, 110, 31–44. [Google Scholar] [CrossRef]
- Hattendorf, B.; Günther, D. Suppression of in-cell generated interferences in a reaction cell ICP-MS by bandpass tuning and kinetic energy discrimination. J. Anal. At. Spectrom. 2004, 19, 600–606. [Google Scholar] [CrossRef]
- Cullen, R.T.; Tran, C.L.; Buchanan, D.; Davis, J.M.G.; Searl, A.; Jones, A.D.; Donaldson, K. Inhalation of Poorly Soluble Particles. I. Differences In Inflammatory Response and Clearance During Exposure. Inhal. Toxicol. 2000, 12, 1089–1111. [Google Scholar] [CrossRef] [PubMed]
- Landsiedel, R.; Ma-Hock, L.; Kroll, A.; Hahn, D.; Schnekenburger, J.; Wiench, K.; Wohlleben, W. Testing metal-oxide nanomaterials for human safety. Adv.Mater. 2010, 22, 2601–2627. [Google Scholar] [CrossRef] [PubMed]
- Warheit, D.B.; Donner, E.M. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues. Food Chem. Toxicol. 2015, 85, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Ma-Hock, L.; Burkhardt, S.; Strauss, V.; Gamer, A.; Wiench, K.; van Ravenzwaay, B.; Landsiedel, R. Development of a Short-Term Inhalation Test in the Rat Using Nano-Titanium Dioxide as a Model Substance. Inhal. Toxicol. 2009, 21, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Van Ravenzwaay, B.; Landsiedel, R.; Fabian, E.; Burkhardt, S.; Strauss, V.; Ma-Hock, L. Comparing fate and effects of three particles of different surface properties: Nano-TiO2, pigmentary TiO2 and quartz. Toxicol. Lett. 2009, 186, 152–159. [Google Scholar] [CrossRef]
- Grassian, V.H.; O’Shaughnessy, P.T.; damcakova-Dodd, A.; Pettibone, J.M.; Thorne, P.S. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect. 2007, 115, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Warheit, D.B.; Brock, W.J.; Lee, K.P.; Webb, T.R.; Reed, K.L. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: Impact of surface treatments on particle toxicity. Toxicol. Sci. 2005, 88, 514–524. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, E.; Mangum, J.B.; Wong, B.A.; Asgharian, B.; Hext, P.M.; Warheit, D.B.; Everitt, J.I. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol. Sci. 2004, 77, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Guldberg, M.; Jensen, S.L.; Knudsen, T.; Steenberg, T.; Kamstrup, O. High-alumina low-silica HT stone wool fibers: A chemical compositional range with high biosolubility. Regul. Toxicol. Pharmacol. 2002, 35, 217–226. [Google Scholar] [CrossRef]
- Scientific Committee of Consumer Safety. Guidance on the safety assessment of nanomaterials in cosmetics. Brussels, Belgium. SCCS 2019, 1611, 19. [Google Scholar]
- Scientific Committee of Consumer Safety. The SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation. Brussels, Belgium. SCCS 2015, 1564, 15. [Google Scholar]
- Vela, E.; Hernández-Orte, P.; Castro, E.; Ferreira, V.; Lopez, R. Effect of bentonite fining on polyfunctional mercaptans and other volatile compounds in Sauvignon Blanc wines. Am. J. Enol. Vitic. 2017, 68, 30–38. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Lusvardi, G.; Zoboli, A.; Di Giuseppe, D.; Lassinantti Gualtieri, M. Biodurability and release of metals during the dissolution of chrysotile, crocidolite and fibrous erionite. Environ. Res. 2019, 171, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Konduru, N.; Keller, J.; Ma-Hock, L.; Gröters, S.; Landsiedel, R.; Donaghey, T.C.; Brain, J.D.; Wohlleben, W.; Molina, R.M. Biokinetics and effects of barium sulfate nanoparticles. Part. Fibre Toxicol. 2014, 11, 55. [Google Scholar] [CrossRef] [Green Version]
Flow-Rate [mL/h] | ||
---|---|---|
Sampling Time [h] | Ramp Up ↑ | Ramp Down ↓ |
24 | 0.1 | 3.0 |
48 | 0.1 | 3.0 |
72 | 0.2 | 2.0 |
84 | 0.5 | 2.0 |
96 | 0.5 | 1.0 |
106 | 1.0 | 1.0 |
120 | 1.0 | 0.5 |
125 | 2.0 | 0.5 |
135 | 2.0 | 0.2 |
147 | 3.0 | 0.1 |
168 | 3.0 | 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keller, J.G.; Peijnenburg, W.; Werle, K.; Landsiedel, R.; Wohlleben, W. Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome. Nanomaterials 2020, 10, 311. https://doi.org/10.3390/nano10020311
Keller JG, Peijnenburg W, Werle K, Landsiedel R, Wohlleben W. Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome. Nanomaterials. 2020; 10(2):311. https://doi.org/10.3390/nano10020311
Chicago/Turabian StyleKeller, Johannes G., Willie Peijnenburg, Kai Werle, Robert Landsiedel, and Wendel Wohlleben. 2020. "Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome" Nanomaterials 10, no. 2: 311. https://doi.org/10.3390/nano10020311
APA StyleKeller, J. G., Peijnenburg, W., Werle, K., Landsiedel, R., & Wohlleben, W. (2020). Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome. Nanomaterials, 10(2), 311. https://doi.org/10.3390/nano10020311