Pyrene Coating Transition Metal Disulfides as Protection from Photooxidation and Environmental Aging
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pagona, G.; Bittencourt, C.; Arenal, R.; Tagmatarchis, N. Exfoliated Semiconducting Pure 2H-MoS2 and 2H-WS2 Assisted by Chlorosulfonic Acid. Chem. Commun. 2015, 51, 12950–12953. [Google Scholar] [CrossRef]
- Fan, X.; Xu, P.; Li, Y.C.; Zhou, D.; Sun, Y.; Nguyen, M.A.T.; Terrones, M.; Mallouk, T.E. Controlled Exfoliation of MoS2 Crystals into Trilayer Nanosheets. J. Am. Chem. Soc. 2016, 138, 5143–5149. [Google Scholar] [CrossRef]
- Niu, L.; Coleman, J.N.; Zhang, H.; Shin, H.; Chhowalla, M.; Zheng, Z. Production of Two-Dimensional Nanomaterials Via Liquid-Based Direct Exfoliation. Small 2016, 12, 272–293. [Google Scholar] [CrossRef]
- Grayfer, E.D.; Kozlova, M.N.; Fedorov, V.E. Colloidal 2D Nanosheets of MoS2 and Other Transition Metal Dichalcogenides Through Liquid-Phase Exfoliation. Adv. Colloid Interface Sci. 2017, 245, 40–61. [Google Scholar] [CrossRef]
- Chow, P.K.; Jacobs-Gedrim, R.B.; Gao, J.; Lu, T.-M.; Yu, B.; Terrones, H.; Koratkar, N. Defect-Induced Photoluminescence in Monolayer Semiconducting Transition Metal Dichalcogenides. ACS Nano 2015, 9, 1520–1527. [Google Scholar] [CrossRef]
- Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J.S.; Matthews, T.S.; You, L.; Li, J.; Grossman, J.C.; Wu, J. Broad-Range Modulation of Light Emission in Two-Dimensional Semiconductors by Molecular Physisorption Gating. Nano Lett. 2013, 13, 2831–2836. [Google Scholar] [CrossRef]
- Pritchard, C.; Midgley, J.W. The Effect of Humidity on the Friction and Life of Unbonded Molybdenum Disulfide Films. Wear 1969, 13, 39–50. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.-J.; Liu, M.; Peterson, A.; Hurt, R.H. Oxidation Suppression During Hydrothermal Phase Reversion Allows Synthesis of Monolayer Semiconducting MoS2 in Stable Aqueous Suspension. Tribol. Lett. 2014, 53, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Tagawa, M.; Muromoto, M.; Hachiue, S.; Yokota, K.; Ohmae, N.; Matsumoto, K.; Suzuki, M. Hyperthermal Atomic Oxygen Interaction with MoS2 Lubricants and Relevance to Space Environmental Effects in Low Earth Orbit-Effects on Friction Coefficient and Wear-Life. Tribol. Lett. 2005, 18, 437–443. [Google Scholar] [CrossRef]
- Liang, T.; Sawyer, W.G.; Perry, S.S.; Sinnott, S.B.; Phillpot, S.R. Energetics of Oxidation in MoS2 Nanoparticles by Density Functional Theory. J. Phys. Chem. C 2011, 115, 10606–10616. [Google Scholar]
- Liang, T.; Sawyer, W.G.; Perry, S.S.; Sinnott, S.B.; Phillpot, S.R. First-Principles Determination of Static Potential Energy Surfaces for Atomic Friction in MoS2 and MoO3. Phys. Rev. B 2008, 77, 104105. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Li, B.; Tan, J.; Chow, P.; Lu, T.-M.; Koratkar, N. Aging of Transition Metal Dichalcogenide Monolayers. ACS Nano 2016, 10, 2628–2635. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, A.; Chiappe, D.; Asselberghs, I.; Radu, I.; de Gendt, S. Improving MOCVD MoS2 Electrical Performance: Impact of Minimized Water and Air Exposure Conditions. IEEE Electron. Dev. Lett. 2017, 38, 1606–1609. [Google Scholar] [CrossRef]
- Lee, G.-H.; Cui, X.; Kim, Y.D.; Arefe, G.; Zhang, X.; Lee, C.-H.; Ye, F.; Watanabe, K.; Taniguchi, T.; Kim, P.; et al. Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. ACS Nano 2015, 9, 7019–7026. [Google Scholar] [CrossRef]
- Ahn, S.; Kim, G.; Nayak, P.K.; Yoon, S.I.; Lim, H.; Shin, H.-J.; Shin, H.S. Prevention of Transition Metal Dichalcogenide Photodegradation by Encapsulation with h-BN Layers. ACS Nano 2016, 10, 8973–8979. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kwak, J.; Kim, J.H.; Lee, J.-U.; Jo, Y.; Kim, S.Y.; Cheong, H.; Lee, Z.; Kwon, S.-Y. Substantial Improvements of Long-Term Stability in Encapsulation-Free WS2 Using Highly Interacting Graphene Substrate. 2D Mater. 2017, 4, 011007. [Google Scholar] [CrossRef]
- Wood, J.D.; Wells, S.A.; Jariwala, D.; Chen, K.; Cho, E.; Sangwan, V.K.; Liu, X.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Effective Passivation of Exfoliated Black Phosphorus Transistors Against Ambient Degradation. Nano Lett. 2014, 14, 6964–6970. [Google Scholar] [CrossRef] [Green Version]
- Jeanguillaume, C.; Colliex, C. Spectrum-Image: The Next Step in EELS Digital Acquisition and Processing. Ultramicroscopy 1989, 28, 252–257. [Google Scholar] [CrossRef]
- Arenal, A.; de la Peña, F.; Stephan, O.; Walls, M.; Tence, M.; Loiseau, A.; Colliex, C. Extending the Analysis of EELS Spectrum-Imaging Data, From Elemental to Bond Mapping in Complex Nanostructures. Ultramicroscopy 2008, 109, 32–38. [Google Scholar] [CrossRef]
- Briddon, P.; Jones, R. LDA Calculations Using a Basis of Gaussian Orbitals. Phys. Status Sol. B 2000, 217, 131–171. [Google Scholar] [CrossRef]
- Rayson, M.; Briddon, P. Highly Efficient Method for Kohn-Sham Density Functional Calculations of 500–10,000 Atom Systems. Phys. Rev. B 2009, 80, 205104–205115. [Google Scholar] [CrossRef]
- Briddon, P.R.; Rayson, M.J. Accurate Kohn-Sham DFT with the Speed of Tight Binding: Current Techniques and Future Directions in Materials Modelling. Phys. Status Sol. B 2011, 248, 1309–1318. [Google Scholar] [CrossRef]
- Hartwigsen, C.; Gøedecker, S.; Hutter, J. Relativistic Separable Dual-Space Gaussian Pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Chou, S.S.; Sai, N.; Lu, P.; Coker, E.N.; Liu, S.; Artyushkova, K.; Luk, T.S.; Kaehr, B.; Brinker, C.J. Understanding Catalysis in a Multiphasic Tw-Dimensional Transition Metal Dichalcogenide. Nat. Commun. 2015, 6, 8311. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, F.; Rotunno, E.; Cinquanta, E.; Campi, D.; Bonnini, E.; Kaplan, D.; Lazzarini, L.; Bernasconi, M.; Ferrari, C.; Longo, M.; et al. Novel Near-Infrared Emission from Crystal Defects in MoS2 Multilayer Flakes. Nat. Commun. 2016, 7, 13044. [Google Scholar] [CrossRef] [Green Version]
- Vallan, L.; Canton-Vitoria, R.; Gobeze, H.B.; Jang, Y.; Arenal, R.; Benito, A.M.; Maser, W.K.; D’Souza, F.; Tagmatarchis, N. Interfacing Transition Metal Dichalcogenides with Carbon Dots for Managing Photoinduced Energy and Charge-Transfer Processes. J. Am. Chem. Soc. 2018, 140, 13488–13496. [Google Scholar] [CrossRef] [Green Version]
- Canton-Vitoria, R.; Sayed-Ahmad-Baraza, Y.; Pelaez-Fernandez, M.; Arenal, R.; Bittencourt, C.; Ewels, C.P.; Tagmatarchis, N. Functionalization of MoS2 with 1,2-Dithiolanes: Toward Donor-Acceptor Nanohybrids for Energy Conversion. npj 2D Mater. Appl. 2017, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Canton-Vitoria, R.; Gobeze, H.B.; Blas-Ferrando, V.M.; Ortiz, J.; Jang, Y.; Fernandez-Lazaro, F.; Sastre-Santos, A.; Nakanishi, Y.; Shinohara, H.; d’Souza, F.; et al. Excited State Charge Transfer in Covalently Functionalized MoS2 with Zinc Phthalocyanine Donor-Acceptor Hybrid. Angew. Chem. Int. Ed. 2019, 58, 5712–5717. [Google Scholar] [CrossRef]
- Aleksandrov, L.; Komatsu, T.; Iordanova, R.; Dimitriev, Y. Study of Molybdenum Coordination State and Crystallization Behavior in MoO3-La2O3-B2O3 Glasses by Raman Spectroscopy. J. Phys. Chem. Solids 2011, 72, 263–268. [Google Scholar] [CrossRef]
- Windom, B.C.; Sawyer, W.G.; Hahn, D.W. A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems. Tribol. Lett. 2011, 42, 301–310. [Google Scholar] [CrossRef]
- Daniel, M.F.; Desbat, B.; Lassegues, J.C. Infrared and Raman Study of WO3 Tungsten Trioxides and WO3, xH2O Tungsten Trioxide Hydrates. J. Solid State Chem. 1987, 67, 235–247. [Google Scholar] [CrossRef]
- Ayala, P.; Arenal, R.; Rummeli, M.; Rubio, A.; Pichler, T. The Doping of Carbon Nanotubes with Nitrogen and Their Potential Applications. Carbon 2010, 48, 575–586. [Google Scholar] [CrossRef]
- Arenal, R.; Blase, X.; Loiseau, A. Boron-Nitride and Boron-Carbonitride Nanotubes: Synthesis, Characterization and Theory. Adv. Phys. 2010, 59, 101–179. [Google Scholar] [CrossRef]
- Alvarez, L.; Almadori, Y.; Arenal, R.; Babaa, R.; Michel, T.; Leparc, R.; Bantignies, J.-L.; Hermet, P.; Sauvajol, J.-L. Charge Transfer Evidence Between Carbon Nanotubes and Encapsulated Conjugated Oligomers. J. Phys. Chem. C 2011, 115, 11898–11905. [Google Scholar] [CrossRef] [Green Version]
- Arenal, R.; De Matteis, L.; Custardoy, L.; Mayoral, A.; Tence, M.; Grazu, V.; de la Fuente, J.M.; Marquina, C.; Ibarra, M.R. Spatially-Resolved EELS Analysis of Antibody Distribution on Biofunctionalized Magnetic Nanoparticles. ACS Nano 2013, 7, 4006–4013. [Google Scholar] [CrossRef]
- Albiter, M.A.; Huirache-Acuña, R.; Paraguay-Delgado, F.; Rico, J.L.; Alonso-Nuñez, G. Synthesis of MoS2 Nanorods and Their Catalytic Test in the HDS of Dibenzothiophene. Nanotechnology 2006, 17, 3473–3481. [Google Scholar] [CrossRef]
- Santosh, K.C.; Longo, R.C.; Wallace, R.M.; Cho, K. Surface Oxidation Energetics and Kinetics on MoS2 Monolayer. J. Appl. Phys. 2015, 117, 135301–135309. [Google Scholar]
- Addou, R.; McDonnell, S.; Barrera, D.; Guo, Z.; Azcat, A.; Wang, J.; Zhu, H.; Hinkle, C.L.; Quevedo-Lopez, M.; Alshareef, H.N.; et al. Impurities and Electronic Property Variations of Natural MoS2 Crystal Surfaces. ACS Nano 2015, 9, 9124–9133. [Google Scholar] [CrossRef]
- Addou, R.; Colombo, L.; Wallace, R.M. Surface Defects on Natural MoS2. ACS Appl. Mater. Interfaces 2015, 7, 11921–11929. [Google Scholar] [CrossRef]
- Chow, P.; Singh, E.; Viana, B.; Gao, J.; Luo, J.; Li, J.; Lin, Z.; Elías, A.; Shi, Y.; Wang, Z.; et al. Wetting of Mono and Few-Layered WS2 and Mos2 Films Supported on Si/SiO2 Substrates. ACS Nano 2015, 9, 3023–3031. [Google Scholar] [CrossRef] [PubMed]
- Afanasiev, P.; Lorentz, C. Oxidation of Nanodispersed MoS2 in Ambient Air: The Products and the Mechanistic Steps. J. Phys. Chem. C 2019, 123, 7486–7494. [Google Scholar] [CrossRef]
- Kozbial, A.; Gong, X.; Liu, H.; Li, L. Understanding the Intrinsic Water Wettability of Molybdenum Disulfide (MoS2). Langmuir 2015, 31, 8429–8435. [Google Scholar] [CrossRef] [PubMed]
- Barja, S.; Refaely-Abramson, S.; Schuler, B.; Qiu, D.; Pulkin, A.; Wickenburg, S.; Ryu, H.; Ugeda, M.; Kastl, C.; Chen, C. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3382. [Google Scholar] [CrossRef]
- Hu, Z.; Avila, J.; Wang, X.; Leong, J.; Zhang, Q.; Liu, Y.; Asensio, M.; Lu, J.; Carvalho, A.; Sow, C. The Role of Oxygen Atoms on Excitons at the Edges of Monolayer WS2. Nano Lett. 2019, 19, 4641. [Google Scholar] [CrossRef]
- Canton-Vitoria, R.; Stangel, C.; Tagmatarchis, N. Electrostatic Association of Ammonium-Functionalized Layered-Transition-Metal Dichalcogenides with an Anionic Porphyrin. ACS Appl. Mater. Interfaces 2018, 10, 23476–23480. [Google Scholar] [CrossRef]
- Canton-Vitoria, R.; Vallan, L.; Urriolabeitia, E.; Benito, A.M.; Maser, W.K.; Tagmatarchis, N. Electronic Interactions in Illuminated Carbon Dot/MoS2 Ensembles and Electrocatalytic Activity Towards Hydrogen Evolution. Chem. Eur. J. 2018, 24, 10468–10474. [Google Scholar] [CrossRef]
- Bertolazzi, S.; Gobbi, M.; Zhao, Y.; Backes, C.; Samorì, P. Molecular Chemistry Approaches for Tuning the Properties of Two-Dimensional Transition Metal Dichalcogenides. Chem. Soc. Rev. 2018, 47, 6845–6888. [Google Scholar] [CrossRef] [Green Version]
- Stergiou, A.; Tagmatarchis, N. Molecular Functionalization of 2D MoS2 Nanosheets. Chem. Eur. J. 2018, 24, 18246–18257. [Google Scholar] [CrossRef]
- Canton-Vitoria, R.; Istif, E.; Hernandez-Ferrer, J.; Benito, A.M.; Maser, W.K.; Tagmatarchis, N. Integrating Water-Soluble Polythiophene with Transition Metal Dichalcogenides for Managing Photoinduced Processes. ACS Appl. Mater. Interfaces 2019, 11, 5947–5956. [Google Scholar] [CrossRef]
- Mirabelli, G.; McGeough, C.; Schmidt, M.; McCarthy, E.; Monaghan, S.; Povey, I.; McCarthy, M.; Gity, F.; Nagle, R.; Hughes, G.; et al. Air Sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. J. Appl. Phys. 2016, 120, 125102–125111. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canton-Vitoria, R.; Sayed-Ahmad-Baraza, Y.; Humbert, B.; Arenal, R.; Ewels, C.P.; Tagmatarchis, N. Pyrene Coating Transition Metal Disulfides as Protection from Photooxidation and Environmental Aging. Nanomaterials 2020, 10, 363. https://doi.org/10.3390/nano10020363
Canton-Vitoria R, Sayed-Ahmad-Baraza Y, Humbert B, Arenal R, Ewels CP, Tagmatarchis N. Pyrene Coating Transition Metal Disulfides as Protection from Photooxidation and Environmental Aging. Nanomaterials. 2020; 10(2):363. https://doi.org/10.3390/nano10020363
Chicago/Turabian StyleCanton-Vitoria, Ruben, Yuman Sayed-Ahmad-Baraza, Bernard Humbert, Raul Arenal, Christopher P. Ewels, and Nikos Tagmatarchis. 2020. "Pyrene Coating Transition Metal Disulfides as Protection from Photooxidation and Environmental Aging" Nanomaterials 10, no. 2: 363. https://doi.org/10.3390/nano10020363
APA StyleCanton-Vitoria, R., Sayed-Ahmad-Baraza, Y., Humbert, B., Arenal, R., Ewels, C. P., & Tagmatarchis, N. (2020). Pyrene Coating Transition Metal Disulfides as Protection from Photooxidation and Environmental Aging. Nanomaterials, 10(2), 363. https://doi.org/10.3390/nano10020363