Controllable Synthesis of Three-Dimensional β-NiS Nanostructured Assembly for Hybrid-Type Asymmetric Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nickel Sulfide Precursors
2.3. Preparation of Different Morphological Nickel Sulfides
2.4. Preparation of Electrode
2.5. Physical Characterizations
2.6. Electrochemical Measurements
3. Results
3.1. Characterizations of Different Morphological β-NiS Compounds
3.2. Electrochemical Performance of Different Morphological β-NiS Compounds
3.3. Asymmetric Supercapacitors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, H.; Liu, L.; Vellacheri, R.; Lei, Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Adv. Sci. 2017, 4, 1700188. [Google Scholar] [CrossRef]
- Kasimalla, V.K.; Velisala, V. A review on energy allocation of fuel cell/battery/ultracapacitor for hybrid electric vehicles. Int. J. Energy Res. 2018, 42, 4263–4283. [Google Scholar] [CrossRef]
- Raza, W.; Ali, F.; Raza, N.; Luo, Y.; Kim, K.H.; Yang, J.; Kumar, S.; Mehmood, A.; Kwon, E.E. Recent advancements in supercapacitor technology. Nano Energy 2018, 52, 441–473. [Google Scholar] [CrossRef]
- Tasnin, W.; Saikia, L.C. Performance comparison of several energy storage devices in deregulated AGC of a multi-area system incorporating geothermal power plant. IET Renew. Power Gen. 2018, 12, 761–772. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Lyu, H. Triple layer tungsten trioxide, graphene, and polyaniline composite films for combined energy storage and electrochromic applications. Polymers 2019, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Cao, C. The way to improve the energy density of supercapacitors: Progress and perspective. Sci. China Mater. 2018, 61, 1517–1526. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Wang, T.; Shao, J.; Wang, D.; Yang, Y.W. Mesoporous transition metal oxides for supercapacitors. Nanomaterials 2015, 5, 1667–1689. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, H.B.; Xie, Y.; Lou, X.W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 2014, 53, 1488–1504. [Google Scholar] [CrossRef]
- Yi, H.; Wang, H.; Jing, Y.; Peng, T.; Wang, Y.; Guo, J.; He, Q.; Guo, Z.; Wang, X. Advanced asymmetric supercapacitors based on CNT@Ni(OH)2 core–shell composites and 3D graphene networks. J. Mater. Chem. A 2015, 3, 19545–19555. [Google Scholar] [CrossRef]
- Sk, M.M.; Yue, C.Y.; Ghosh, K.; Jena, R.K. Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J. Power Sources 2016, 308, 121–140. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, D.; Liu, T.; Jaroniec, M.; Yu, J. Nickel-based materials for supercapacitors. Mater. Today 2019, 25, 35–65. [Google Scholar] [CrossRef]
- Li, B.; Zheng, M.; Xue, H.; Pang, H. High performance electrochemical capacitor materials focusing on nickel based materials. Inorg. Chem. Front. 2016, 3, 175–202. [Google Scholar] [CrossRef]
- Hall, D.S.; Lockwood, D.J.; Bock, C.; MacDougall, B.R. Nickel hydroxides and related materials: A review of their structures, synthesis and properties. Proc. R. Soc. A-Math. Phys. Eng. Sci. 2015, 471, 20140792. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Li, Y.; Yin, B.; Liu, K.; Wang, D.; Zhang, H.; Cheng, C. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem. Eng. J. 2017, 308, 1165–1173. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, A.; Zhang, Y.; Shi, J.; Lin, J.; Liang, S.; Cao, G. Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 9153–9160. [Google Scholar] [CrossRef]
- Ikkurthi, K.D.; Srinivasa Rao, S.; Ahn, J.W.; Sunesh, C.D.; Kim, H.J. A cabbage leaf like nanostructure of a NiS@ZnS composite on Ni foam with excellent electrochemical performance for supercapacitors. Dalton Trans. 2019, 48, 578–586. [Google Scholar] [CrossRef]
- Shinde, N.M.; Xia, Q.X.; Shinde, P.V.; Yun, J.M.; Mane, R.S.; Kim, K.H. Sulphur source-inspired self-grown 3D NixSy nanostructures and their electrochemical supercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 4551–4559. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Yu, L.; Lou, X.W. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1501333. [Google Scholar] [CrossRef]
- Wang, H.; Liang, M.; Duan, D.; Shi, W.; Song, Y.; Sun, Z. Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem. Eng. J. 2018, 350, 523–533. [Google Scholar] [CrossRef]
- Du, N.; Zheng, W.; Li, X.; He, G.; Wang, L.; Shi, J. Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors. Chem. Eng. J. 2017, 323, 415–424. [Google Scholar] [CrossRef]
- Rama Raju, G.S.; Pavitra, E.; Nagaraju, G.; Sekhar, S.C.; Ghoreishian, S.M.; Kwak, C.H.; Yu, J.S.; Huh, Y.S.; Han, Y.K. Rational design of forest-like nickel sulfide hierarchical architectures with ultrahigh areal capacity as a binder-free cathode material for hybrid supercapacitors. J. Mater. Chem. A 2018, 6, 13178–13190. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, B.; Qu, C.; Chen, D.; Dang, D.; Song, B.; deGlee, B.M.; Fu, J.; Hu, C.; Wong, C.P.; et al. Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy 2017, 33, 522–531. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Li, M.; Lu, M.; Guan, X. Electrochemical performances investigation of new carbon-coated nickel sulfides as electrode material for supercapacitors. Materials 2019, 12, 3509. [Google Scholar] [CrossRef] [Green Version]
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. [Google Scholar] [CrossRef]
- Lidef, D.R. (Ed.) Handbook of Chemistry and Physics, 81st ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Zhang, Y.; Zhao, Y.; An, W.; Xing, L.; Gao, Y.; Liu, J. Heteroelement Y-doped alpha-Ni(OH)2 nanosheets with excellent pseudocapacitive performance. J. Mater. Chem. A 2017, 5, 10039–10047. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Su, L.Y. Control of ZnO morphology via a simple solution route. Chem. Mater. 2002, 14, 4172–4177. [Google Scholar] [CrossRef]
- Wang, Z.; Su, F.; Madhavi, S.; Lou, X.W. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale 2011, 3, 1618–1623. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Xin, L.; Wu, M.; Lou, X. Single-crystal beta-NiS nanorod arrays with a hollow-structured Ni3S2 framework for supercapacitor applications. J. Mater. Chem. A 2016, 4, 7700–7709. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Z.; Liu, L.; Gao, Y.; Liu, J. High conductive architecture: Bimetal oxide with metallic properties @ bimetal hydroxide for high-performance pseudocapacitor. Electrochim. Acta 2017, 231, 487–494. [Google Scholar] [CrossRef]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Zhou, G.; Gao, X.; Chen, J.; Zhang, L.; Xu, J.; Zhao, P.; Gao, F. α- and β-Phase Ni-Mg hydroxide for high performance hybrid supercapacitors. Nanomaterials 2019, 9, 1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Yang, B.; Liu, Q.; Liu, J.; Wang, X.; Song, D.; Wang, J.; Jing, X. Interconnected NiS nanosheets supported by nickel foam: Soaking fabrication and supercapacitors application. J. Electroanal. Chem. 2015, 739, 156–163. [Google Scholar] [CrossRef]
- Ruan, Y.; Jiang, J.; Wan, H.; Ji, X.; Miao, L.; Peng, L.; Zhang, B.; Lv, L.; Liu, J. Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors. J. Power Sources 2016, 301, 122–130. [Google Scholar] [CrossRef]
- Cai, F.; Sun, R.; Kang, Y.; Chen, H.; Chen, M.; Li, Q. One-step strategy to a three-dimensional NiS-reduced graphene oxide hybrid nanostructure for high performance supercapacitors. RSC Adv. 2015, 5, 23073–23079. [Google Scholar] [CrossRef]
Materials | Volumes Ratios (mL) | ||
---|---|---|---|
Ethanol | Deionized Water | Glycol | |
coral-like β-NiS | 30 | 0 | 0 |
urchin-like β-NiS | 3 | 27 | 0 |
flake-like β-NiS | 12 | 12 | 6 |
flower-like β-NiS | 6 | 12 | 12 |
Materials | Pore Size Distribution | |
---|---|---|
Mesopore | Macropore | |
coral-like β-NiS | 9.85 nm and 16.32 nm | —— |
urchin-like β-NiS | 4.70 nm | —— |
flake-like β-NiS | 4.64 nm | 66.28 nm |
flower-like β-NiS | 3.91 nm | —— |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, J.; Ding, D.; Gao, Y. Controllable Synthesis of Three-Dimensional β-NiS Nanostructured Assembly for Hybrid-Type Asymmetric Supercapacitors. Nanomaterials 2020, 10, 487. https://doi.org/10.3390/nano10030487
Zhang Y, Zhang J, Ding D, Gao Y. Controllable Synthesis of Three-Dimensional β-NiS Nanostructured Assembly for Hybrid-Type Asymmetric Supercapacitors. Nanomaterials. 2020; 10(3):487. https://doi.org/10.3390/nano10030487
Chicago/Turabian StyleZhang, Yao, Jia Zhang, Daqian Ding, and Yanfang Gao. 2020. "Controllable Synthesis of Three-Dimensional β-NiS Nanostructured Assembly for Hybrid-Type Asymmetric Supercapacitors" Nanomaterials 10, no. 3: 487. https://doi.org/10.3390/nano10030487
APA StyleZhang, Y., Zhang, J., Ding, D., & Gao, Y. (2020). Controllable Synthesis of Three-Dimensional β-NiS Nanostructured Assembly for Hybrid-Type Asymmetric Supercapacitors. Nanomaterials, 10(3), 487. https://doi.org/10.3390/nano10030487