Transparent Platinum Counter Electrode Prepared by Polyol Reduction for Bifacial, Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Pt Counter Electrodes
2.2. Characterization
2.3. Device Fabrication and Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fakharuddin, A.; Jose, R.; Brown, T.M.; Fabregat-Santiago, F.; Bisquert, J. A perspective on the production of dye-sensitized solar modules. Energ. Environ. Sci. 2014, 7, 3952–3981. [Google Scholar] [CrossRef]
- Wu, W.; Wang, J.; Zheng, Z.; Hu, Y.; Jin, J.; Zhang, Q.; Hua, J. A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells. Sci. Rep. 2015, 5, 8592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lightning. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, W.; Xu, D.; Xu, Q.; Xie, J.; Chen, X.; Zhang, T.; Xiong, C.; He, Y.; Zhang, Y.; et al. Outdoor testing and ageing of dye-sensitized solar cells for building integrated photovoltaics. Solar Energy 2018, 165, 233–239. [Google Scholar] [CrossRef]
- Li, P.; Tang, Q. Highly transparent metal selenide counter electrodes for bifacial dye-sensitized solar cells. J. Power Sources 2016, 317, 43–48. [Google Scholar] [CrossRef]
- Kang, J.S.; Kim, J.; Kim, J.-Y.; Lee, M.J.; Kang, J.; Son, Y.J.; Jeong, J.; Park, S.H.; Ko, M.J.; Sung, Y.-E. Highly efficient bifacial dye-sensitized solar cells employing polymeric counter electrodes. ACS Appl. Mater. Interfaces 2018, 10, 8611–8620. [Google Scholar] [CrossRef]
- Bu, C.; Liu, Y.; Yu, Z.; You, S.; Huang, N.; Liang, L.; Zhao, X.-Z. Highly transparent carbon counter electrode prepared via an in situ carbonization method for bifacial dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2013, 5, 7432–7438. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Duan, J.; Tang, Q. S-doped CQDs tailored transparent counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Electrochim. Acta. 2018, 216, 588–595. [Google Scholar] [CrossRef]
- Hu, Z.; Xia, K.; Zhang, J.; Hu, Z.; Zhu, Y. Highly transparent ultrathin metal sulfide films as efficient counter electrodes for bifacial dye-sensitized solar cells. Electrochim. Acta 2015, 170, 39–47. [Google Scholar] [CrossRef]
- Bu, C.; Tai, Q.; Liu, Y.; Guo, S.; Zhao, X. A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell. J. Power Sources 2013, 221, 78–83. [Google Scholar] [CrossRef]
- Li, H.; Xiao, X.; Han, G.; Hou, H. Honeycomb-like poly(3,4-ethylenedioxythiophene) as an effective and transparent counter electrode in bifacial dye-sensitized solar cells. J. Power Sources 2017, 342, 709–716. [Google Scholar] [CrossRef]
- He, B.; Zhang, X.; Zhang, H.; Li, J.; Meng, Q.; Tang, Q. Transparent molybdenum sulfide decorated polyaniline complex counter electrodes for efficient bifacial dye-sensitized solar cells. Solar Energy 2017, 147, 470–478. [Google Scholar] [CrossRef]
- Ahmed, A.S.A.; Xiang, W.; Hu, X.; Qi, C.; Amiinu, I.S.; Zhao, X. Si3N4/MoS2-PEDOT:PSS composite counter electrode for bifacial dye-sensitized solar cells. Solar Energy 2018, 173, 1135–1143. [Google Scholar] [CrossRef]
- Moraes, R.S.; Saito, E.; Leite, D.M.G.; Massi, M.; da Silva Sobrinho, A.S. Optical, electrical and electrochemical evaluation of sputtered platinum counter electrodes for dye sensitized solar cells. Appl. Surf. Sci. 2016, 364, 229–234. [Google Scholar] [CrossRef]
- Zhou, R.; Guo, W.; Yu, R.; Pan, C. Highly flexible, conductive and catalytic Pt networks as transparent counter electrodes for wearable dye-sensitized solar cells. J. Mater. Chem. A 2015, 3, 23028–23034. [Google Scholar] [CrossRef]
- Dong, H.; Chen, Y.C.; Feldmann, C. Polyol synthesis of nanoparticles: Status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem. 2015, 17, 4107–4132. [Google Scholar] [CrossRef]
- Fievet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J.Y.; Sicard, L.; Viau, G. The polyol process: A unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 2018, 47, 5187–5233. [Google Scholar] [CrossRef]
- Cho, S.J.; Ouyang, J. Attachment of platinum nanoparticles to substrates by coating and polyol reduction of a platinum precursor. J. Phys. Chem. C 2011, 115, 8519–8526. [Google Scholar] [CrossRef]
- Sun, K.; Fan, B.; Ouyang, J. Nanostructured platinum films deposited by polyol reduction of a platinum precursor and their application as counter electrode dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 4237–4244. [Google Scholar] [CrossRef]
- Cho, S.J.; Neo, C.Y.; Mei, X.G.; Ouyang, J.Y. Platinum nanoparticles deposited on substrates by solventless chemical reduction of a platinum precursor with ethylene glycol vapor and its application as highly effective electrocatalyst in dye-sensitized solar cells. Electrochim. Acta 2012, 85, 16–24. [Google Scholar] [CrossRef]
- Song, M.Y.; Chaudhari, K.N.; Park, J.; Yang, D.-S.; Kim, J.H.; Kim, M.-S.; Lim, K.; Ko, J.; Yu, J.-S. High efficient Pt counter electrode prepared by homogeneous deposition method for dye-sensitized solar cell. Appl. Energy 2012, 100, 132–137. [Google Scholar] [CrossRef]
- Decoppet, J.-D.; Moehl, T.; Babkair, S.S.; Alzubaydi, R.A.; Ansari, A.A.; Habib, S.S.; Zakeeruddin, S.M.; Schmidt, H.-W.; Grätzel, M. Molecular gelation of ionic liquid–sulfolane mixtures, a solid electrolyte for high performance dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 15972–15977. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, E.; Penna, S.; Brown, T.M.; Di Carlo, A.; Reale, A. Stability of dye-sensitized solar cells under light soaking test. J. Non-Cryst. Solids 2010, 356, 2049–2052. [Google Scholar] [CrossRef]
- Veerender, P.; Saxena, V.; Jha, P.; Koiry, S.P.; Gusain, A.; Samanta, S.; Chauhan, A.K.; Aswal, D.K.; Gupta, S.K. Free-standing polypyrrole films as substrate-free and Pt-free counter electrodes for quasi-solid dye-sensitized solar cells. Org. Electron. 2012, 13, 3032–3039. [Google Scholar]
- Skrabalak, S.E.; Wiley, B.J.; Kim, M.; Formo, E.V.; Xia, Y. On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent. Nano Lett. 2008, 8, 2077–2081. [Google Scholar] [CrossRef] [PubMed]
- Dablemont, C.; Lang, P.; Mangeney, C.; Piquemal, J.-Y.; Petkov, V.; Herbst, F.; Viau, G. FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina. Langmuir 2008, 24, 5832–5841. [Google Scholar] [CrossRef]
- Liu, Z.; Lee, J.Y.; Chen, W.; Han, M.; Gan, L.M. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir 2004, 20, 181–187. [Google Scholar] [CrossRef]
- Wan, J.; Fang, G.; Yin, H.; Liu, X.; Liu, D.; Zhao, M.; Ke, W.; Tao, H.; Tang, Z. Pt-Ni alloy nanoparticles as superior counter electrodes for dye-sensitized solar cells: Experimental and theoretical understanding. Adv. Mater. 2014, 26, 8101–8106. [Google Scholar] [CrossRef]
- Chang, P.-J.; Cheng, K.-Y.; Chou, S.-W.; Shyne, J.-J.; Yang, Y.-Y.; Hung, C.-Y.; Lin, C.-Y.; Chen, H.-L.; Chou, H.-L.; Chou, P.-T. Tri-iodide reduction activity of shape- and composition-controlled PtFe nanostructures as counter electrodes in dye-sensitized solar cells. Chem. Mater. 2016, 28, 2110–2119. [Google Scholar] [CrossRef]
- Popoola, I.K.; Gondal, M.A.; AlGhamdi, J.M.; Qahtan, T.F. Photofabrication of highly transparent platinum counter electrodes at ambient temperature for bifacial dye sensitized solar cells. Sci. Rep. 2018, 8, 12864. [Google Scholar]
Pt(0) | Pt(II) | Pt(IV) | |||||||
---|---|---|---|---|---|---|---|---|---|
4f5/2 | 4f7/2 | S | 4f5/2 | 4f7/2 | S | 4f5/2 | 4f7/2 | S | |
PR-130 | 74.8 | 71.4 | 23.7 | 76.3 | 72.9 | 38.8 | 77.0 | 73.7 | 37.5 |
PR-190 | 74.7 | 71.4 | 48.4 | 75.6 | 72.3 | 22.7 | 77.0 | 73.7 | 28.9 |
PR-210 | 74.7 | 71.4 | 44.8 | 75.6 | 72.3 | 20.9 | 77.0 | 73.7 | 34.3 |
No | ΔEp (V) | J0 (mA/cm2) | Jlim (mA/cm2) | Rs (Ω/cm2) | Rct (Ω/cm2) | ZN (Ω/cm2) |
---|---|---|---|---|---|---|
PR-130 | 0.47 | 4.99 | 0.21 | 8.05 | 5.19 | 0.44 |
PR-150 | 0.44 | 9.16 | 0.21 | 8.26 | 3.79 | 0.44 |
PR-170 | 0.43 | 11.14 | 0.24 | 7.69 | 3.21 | 0.41 |
PR-190 | 0.35 | 14.76 | 0.26 | 7.63 | 2.23 | 0.44 |
PR-210 | 0.46 | 12.44 | 0.26 | 8.13 | 3.17 | 0.48 |
TD-425 | 0.29 | 11.62 | 0.27 | 11.79 | 1.27 | 0.59 |
No | Illumination | Voc (V) | Jsc (mA/cm2) | FF (%) | η (%) | η (R) (%) |
---|---|---|---|---|---|---|
PR-130 | Front | 0.666 ± 0.007 | 13.82 ± 0.23 | 59.70 ± 5.48 | 5.50 ± 0.66 | 81.03 ± 1.68 |
Back | 0.664 ± 0.008 | 10.67 ± 0.32 | 62.74 ± 4.85 | 4.45 ± 0.50 | ||
PR-150 | Front | 0.673 ± 0.003 | 13.99 ± 0.51 | 67.45 ± 1.43 | 6.35 ± 0.33 | 77.57 ± 1.57 |
Back | 0.670 ± 0.004 | 10.65 ± 0.62 | 69.04 ± 1.22 | 4.93 ± 0.35 | ||
PR-170 | Front | 0.694 ± 0.006 | 13.96 ± 0.31 | 67.20 ± 1.33 | 6.51 ± 0.30 | 76.73 ± 1.33 |
Back | 0.689 ± 0.003 | 10.62 ± 0.52 | 68.28 ± 0.90 | 5.00 ± 0.30 | ||
PR-190 | Front | 0.702 ± 0.011 | 13.77 ± 0.12 | 67.66 ± 1.55 | 6.55 ± 0.28 | 76.61 ± 3.24 |
Back | 0.699 ± 0.00 | 10.44 ± 0.23 | 68.71 ± 1.76 | 5.01 ± 0.24 | ||
PR-210 | Front | 0.695 ± 0.004 | 13.76 ± 0.45 | 67.02 ± 0.84 | 6.41 ± 0.29 | 76.70 ± 2.14 |
Back | 0.692 ± 0.008 | 10.42 ± 0.68 | 68.22 ± 0.94 | 4.92 ± 0.3 | ||
TD-425 | Front | 0.682 ± 0.00 | 13.97 ± 0.46 | 67.36 ± 0.72 | 6.42 ± 0.28 | 67.92 ± 2.66 |
Back | 0.672 ± 0.005 | 9.40 ± 0.16 | 68.97 ± 0.66 | 4.35 ± 0.05 |
Material | Method | T (%) | Voc (V) | Jsc (mAcm−2) | FF (%) | η (front) (%) | η (back) (%) | η (R) (%) | Refs. |
---|---|---|---|---|---|---|---|---|---|
PEDOT | Electropolymerization | ~90 a | 0.751 | 14.60 | 67 | 7.40 | 5.23 | 70.7 | [6] |
Carbon | Carbonization | ~75 | 0.721 | 10.52 | 60 | 6.07 | 5.04 | 83.0 | [7] |
Ni3S4 | Hydrothermal | ~70 | 0.700 | 13.58 | 65 | 6.56 | 4.86 | 73.9 | [9] |
PANI/MoS2 | Composite | ~63 | 0.799 | 17.93 | 63 | 7.99 | 3.40 | 42.6 | [12] |
Pt | Photo-reduction | ~95 | 0.810 | 13.53 | 66.6 | 7.29 | 5.85 | 80.3 | [30] |
Pt | Thermal decomposition | ~80 a | 0.757 | 15.00 | 70.7 | 8.02 | 4.43 | 55.2 | [30] |
Pt | Polyol reduction b | ~80 | 0.702 | 13.77 | 67.6 | 6.55 | 5.01 | 76.6 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghifari, A.; Long, D.X.; Kim, S.; Ma, B.; Hong, J. Transparent Platinum Counter Electrode Prepared by Polyol Reduction for Bifacial, Dye-Sensitized Solar Cells. Nanomaterials 2020, 10, 502. https://doi.org/10.3390/nano10030502
Ghifari A, Long DX, Kim S, Ma B, Hong J. Transparent Platinum Counter Electrode Prepared by Polyol Reduction for Bifacial, Dye-Sensitized Solar Cells. Nanomaterials. 2020; 10(3):502. https://doi.org/10.3390/nano10030502
Chicago/Turabian StyleGhifari, Alvien, Dang Xuan Long, Seonhyoung Kim, Brian Ma, and Jongin Hong. 2020. "Transparent Platinum Counter Electrode Prepared by Polyol Reduction for Bifacial, Dye-Sensitized Solar Cells" Nanomaterials 10, no. 3: 502. https://doi.org/10.3390/nano10030502
APA StyleGhifari, A., Long, D. X., Kim, S., Ma, B., & Hong, J. (2020). Transparent Platinum Counter Electrode Prepared by Polyol Reduction for Bifacial, Dye-Sensitized Solar Cells. Nanomaterials, 10(3), 502. https://doi.org/10.3390/nano10030502