Highly Rectifying Heterojunctions Formed by Annealed ZnO Nanorods on GaN Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Growth of ZnO Nanorods on FIB-Patterned Substrates
3.2. Electrical Properties
4. Discussion
4.1. The Impact of FIB on the Nucleation of ZnO Nanorods and on the Electrical Properties of the ZnO/GaN Heterojunctions
4.2. The Effect of Thermal Annealing on the Electrical Properties of ZnO/GaN Nanoheterojunctions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ozgur, U.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Dogan, S.; Avrutin, V.; Cho, S.J.; Morkoc, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 41301. [Google Scholar] [CrossRef] [Green Version]
- Janotti, A.; Van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef] [Green Version]
- Look, D.C.; Claflin, B.; Alivov, Y.I.; Park, S.J. The future of ZnO light emitters. Phys. Status Solidi (A) 2004, 201, 2203–2212. [Google Scholar] [CrossRef]
- Chen, C.P.; Ke, M.Y.; Liu, C.C.; Chang, Y.J.; Yang, F.H.; Huang, J.J. Observation of 394 nm electroluminescence from low-temperature sputtered n-ZnO/SiO2 thin films on top of the p-GaN heterostructure. Appl. Phys. Lett. 2007, 91, 91107. [Google Scholar] [CrossRef]
- Belhaj, M.; Dridi, C.; Yatskiv, R.; Grym, J. The improvement of UV photodetection based on polymer/ZnO nanorod heterojunctions. Org. Electron. 2020, 77, 105545. [Google Scholar] [CrossRef]
- Yatskiv, R.; Tiagulskyi, S.; Grym, J.; Vanis, J.; Basinova, N.; Horak, P.; Torrisi, A.; Ceccio, G.; Vacik, J.; Vrnata, M. Optical and electrical characterization of CuO/ZnO heterojunctions. Thin Solid Film. 2020, 693. [Google Scholar] [CrossRef]
- Gruber, T.; Kirchner, C.; Thonke, K.; Sauer, R.; Waag, A. MOCVD growth of ZnO for optoelectronic applications. Phys. Status Solidi (A) 2002, 192, 166–170. [Google Scholar] [CrossRef]
- Ye, B.-U.; Kim, B.J.; Song, Y.H.; Son, J.H.; Yu, H.k.; Kim, M.H.; Lee, J.-L.; Baik, J.M. Enhancing Light Emission of Nanostructured Vertical Light-Emitting Diodes by Minimizing Total Internal Reflection. Adv. Funct. Mater. 2012, 22, 632–639. [Google Scholar] [CrossRef]
- Lupan, O.; Pauporte, T.; Viana, B. Low-voltage UV-electroluminescence from ZnO-nanowire Array/p-GaN light-emitting diodes. Adv. Mater. 2010, 22, 3298–3302. [Google Scholar] [CrossRef]
- Dong, J.J.; Zhang, X.W.; Yin, Z.G.; Wang, J.X.; Zhang, S.G.; Si, F.T.; Gao, H.L.; Liu, X. Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes. Appl. Phys. Lett. 2012, 100, 171109. [Google Scholar] [CrossRef]
- Park, S.H.; Seo, S.Y.; Kim, S.H.; Han, S.W. Surface roughness and strain effects on ZnO nanorod growth. Appl. Phys. Lett. 2006, 88, 251903. [Google Scholar] [CrossRef]
- Park, W.I.; Yi, G.-C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 2004, 16, 87–90. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Y.; Cui, X.; Wu, B.; Zhuang, S.; Yang, F.; Yang, X.; Zhang, B.; Du, G. Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction. Appl. Phys. Lett. 2014, 104, 131109. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Xu, C.X.; Lin, Y.; Shi, Z.L.; Li, J.T.; Ding, T.; Tian, Z.S.; Chen, G.F. Ultraviolet electroluminescence from horizontal ZnO microrods/GaN heterojunction light-emitting diode array. Appl. Phys. Lett. 2012, 101, 41110. [Google Scholar] [CrossRef]
- Vayssieres, L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solution. Adv. Mater. 2003, 15, 464–466. [Google Scholar] [CrossRef]
- Cole, J.J.; Wang, X.; Knuesel, R.J.; Jacobs, H.O. Integration of ZnO Microcrystals with Tailored Dimensions Forming Light Emitting Diodes and UV Photovoltaic Cells. Nano Lett. 2008, 8, 1477–1481. [Google Scholar] [CrossRef]
- Jeong, J.; Choi, J.E.; Kim, Y.-J.; Hwang, S.; Kim, S.K.; Kim, J.K.; Jeong, H.Y.; Hong, Y.J. Reverse-bias-driven dichromatic electroluminescence of n-ZnO wire arrays/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 2016, 109, 101103. [Google Scholar] [CrossRef]
- Xu, S.; Xu, C.; Liu, Y.; Hu, Y.; Yang, R.; Yang, Q.; Ryou, J.H.; Kim, H.J.; Lochner, Z.; Choi, S.L.; et al. Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 2010, 22, 4749–4753. [Google Scholar] [CrossRef]
- Quang, L.H.; Chua, S.J.; Ping Loh, K.; Fitzgerald, E. The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis. J. Cryst. Growth 2006, 287, 157–161. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Chen, T.; Jiang, Y.-L.; Ru, G.-P.; Qu, X.-P. The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction. J. Appl. Phys. 2009, 105, 114504. [Google Scholar] [CrossRef]
- Kim, D.C.; Han, W.S.; Kong, B.H.; Cho, H.K.; Hong, C.H. Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition. Phys. B: Condens. Matter 2007, 401–402, 386–390. [Google Scholar] [CrossRef]
- Park, G.C.; Hwang, S.M.; Lee, S.M.; Choi, J.H.; Song, K.M.; Kim, H.Y.; Kim, H.S.; Eum, S.J.; Jung, S.B.; Lim, J.H.; et al. Hydrothermally Grown In-doped ZnO Nanorods on p-GaN Films for Color-tunable Heterojunction Light-emitting-diodes. Sci. Rep. 2015, 5, 10410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, A.M.; Xi, Y.Y.; Hsu, Y.F.; Djurisic, A.B.; Chan, W.K.; Gwo, S.; Tam, H.L.; Cheah, K.W.; Fong, P.W.; Lui, H.F.; et al. GaN/ZnO nanorod light emitting diodes with different emission spectra. Nanotechnology 2009, 20, 445201. [Google Scholar] [CrossRef] [PubMed]
- Alvi, N.H.; Willander, M.; Nur, O. The effect of the post-growth annealing on the electroluminescence properties of -ZnO nanorods/-GaN light emitting diodes. Superlattices Microstruct. 2010, 47, 754–761. [Google Scholar] [CrossRef]
- Hatch, S.M.; Briscoe, J.; Sapelkin, A.; Gillin, W.P.; Gilchrist, J.B.; Ryan, M.P.; Heutz, S.; Dunn, S. Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance. J. Appl. Phys. 2013, 113, 204501. [Google Scholar] [CrossRef] [Green Version]
- Prucnal, S.; Wu, J.; Berencén, Y.; Liedke, M.O.; Wagner, A.; Liu, F.; Wang, M.; Rebohle, L.; Zhou, S.; Cai, H.; et al. Engineering of optical and electrical properties of ZnO by non-equilibrium thermal processing: The role of zinc interstitials and zinc vacancies. J. Appl. Phys. 2017, 122, 35303. [Google Scholar] [CrossRef]
- Yatskiv, R.; Grym, J. Luminescence properties of hydrothermally grown ZnO nanorods. Superlattices Microstruct. 2016, 99, 214–220. [Google Scholar] [CrossRef]
- Zhang, S.G.; Zhang, X.W.; Yin, Z.G.; Wang, J.X.; Dong, J.J.; Wang, Z.G.; Qu, S.; Cui, B.; Wowchak, A.M.; Dabiran, A.M.; et al. Improvement of electroluminescent performance of n-ZnO/AlN/p-GaN light-emitting diodes by optimizing the AlN barrier layer. J. Appl. Phys. 2011, 109, 93708. [Google Scholar] [CrossRef]
- Zhang, X.-M.; Lu, M.-Y.; Zhang, Y.; Chen, L.-J.; Wang, Z.L. Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film. Adv. Mater. 2009, 21, 2767–2770. [Google Scholar] [CrossRef]
- Yan, J.-T.; Chen, C.-H.; Yen, S.-F.; Lee, C.-T. Ultraviolet ZnO Nanorod/P-GaN-Heterostructured Light-Emitting Diodes. IEEE Photonics Technol. Lett. 2010, 22, 146–148. [Google Scholar] [CrossRef]
- Tiagulskyi, S.; Yatskiv, R.; Faitova, H.; Kucerova, S.; Vanis, J.; Grym, J. Electrical properties of nanoscale p-n heterojunctions formed between a single ZnO nanorod and GaN substrate. Mater. Sci. Semicond. Process. 2020, 107, 104808. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Lee, C.-T.; Yan, J.-T. Emission mechanisms of passivated single n-ZnO:In/i-ZnO/p-GaN-heterostructured nanorod light-emitting diodes. Appl. Phys. Lett. 2010, 97, 111111. [Google Scholar] [CrossRef]
- Lord, A.M.; Ramasse, Q.M.; Kepaptsoglou, D.M.; Evans, J.E.; Davies, P.R.; Ward, M.B.; Wilks, S.P. Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires. Nano Lett. 2017, 17, 687–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talin, A.A.; Léonard, F.; Katzenmeyer, A.M.; Swartzentruber, B.S.; Picraux, S.T.; Toimil-Molares, M.E.; Cederberg, J.G.; Wang, X.; Hersee, S.D.; Rishinaramangalum, A. Transport characterization in nanowires using an electrical nanoprobe. Semicond. Sci. Technol. 2010, 25, 24015. [Google Scholar] [CrossRef]
- Zhao, S.; Salehzadeh, O.; Alagha, S.; Kavanagh, K.L.; Watkins, S.P.; Mi, Z. Probing the electrical transport properties of intrinsic InN nanowires. Appl. Phys. Lett. 2013, 102, 73102. [Google Scholar] [CrossRef]
- Talin, A.A.; Leonard, F.; Swartzentruber, B.S.; Wang, X.; Hersee, S.D. Unusually strong space-charge-limited current in thin wires. Phys. Rev. Lett. 2008, 101, 76802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bie, Y.Q.; Liao, Z.M.; Zhang, H.Z.; Li, G.R.; Ye, Y.; Zhou, Y.B.; Xu, J.; Qin, Z.X.; Dai, L.; Yu, D.P. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011, 23, 649–653. [Google Scholar] [CrossRef]
- Liao, Z.M.; Lv, Z.K.; Zhou, Y.B.; Xu, J.; Zhang, J.M.; Yu, D.P. The effect of adsorbates on the space-charge-limited current in single ZnO nanowires. Nanotechnology 2008, 19, 335204. [Google Scholar] [CrossRef]
- Yatskiv, R.; Tiagulskyi, S.; Grym, J.; Cernohorsky, O. Electrical and Optical Properties of Rectifying ZnO Homojunctions Fabricated by Wet Chemistry Methods. Phys. Status Solidi A-Appl. Mater. Sci. 2018, 215. [Google Scholar] [CrossRef]
- Huh, Y.; Hong, K.J.; Shin, K.S. Amorphization induced by focused ion beam milling in metallic and electronic materials. Microsc. Microanal. 2013, 19 (Suppl. S5), 33–37. [Google Scholar] [CrossRef] [Green Version]
- Nam, C.Y.; Tham, D.; Fischer, J.E. Disorder effects in focused-lon-beam-deposited pt contacts on GaN nanowires. Nano Lett. 2005, 5, 2029–2033. [Google Scholar] [CrossRef]
- Wildeson, I.H.; Ewoldt, D.A.; Colby, R.; Stach, E.A.; Sands, T.D. Controlled Growth of Ordered Nanopore Arrays in GaN. Nano Lett. 2011, 11, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Morin, S.A.; Jin, S. Screw Dislocation-Driven Epitaxial Solution Growth of ZnO Nanowires Seeded by Dislocations in GaN Substrates. Nano Lett. 2010, 10, 3459–3463. [Google Scholar] [CrossRef] [PubMed]
- Besendörfer, S.; Meissner, E.; Tajalli, A.; Meneghini, M.; Freitas, J.A., Jr.; Derluyn, J.; Medjdoub, F.; Meneghesso, G.; Friedrich, J.; Erlbacher, T. Vertical breakdown of GaN on Si due to V-pits. J. Appl. Phys. 2020, 127, 15701. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2007; p. 815. [Google Scholar]
- Sui, C.; Lu, Z.; Xu, T. Effects of annealing temperature on photoluminescence of ZnO nanorods hydrothermally grown on a ZnO:Al seed layer. Opt. Mater. 2013, 35, 2649–2653. [Google Scholar] [CrossRef]
- Rose, A. Space-Charge-Limited Currents in Solids. Phys. Rev. 1955, 97, 1538–1544. [Google Scholar] [CrossRef]
- Riben, A.R.; Feucht, D.L. Electrical transport in nGe-pGaAs heterojunctions. Int. J. Electron. 1966, 20, 583. [Google Scholar] [CrossRef]
- Sieber, B.; Liu, H.; Piret, G.; Laureyns, J.; Roussel, P.; Gelloz, B.; Szunerits, S.; Boukherroub, R. Synthesis and Luminescence Properties of (N-Doped) ZnO Nanostructures from a Dimethylformamide Aqueous Solution. J. Phys. Chem. C 2009, 113, 13643–13650. [Google Scholar] [CrossRef]
- Look, D.C.; Farlow, G.C.; Reunchan, P.; Limpijumnong, S.; Zhang, S.B.; Nordlund, K. Evidence for native-defect donors in n-type ZnO. Phys. Rev. Lett. 2005, 95, 225502. [Google Scholar] [CrossRef] [Green Version]
Annealing Temperature [°C] | Rshunt [Ohm] | I0a) [A] | ηb) | kc) | βd) | Rser [Ohm] |
---|---|---|---|---|---|---|
initial1 | 3 × 1012 | 4.2 × 10−15 | 18 | 3.2 × 10−15 | 6.5 | 9 × 107 |
200 | 3 × 1012 | 2.5 × 10−15 | 17 | 1.4 × 10−14 | 6.5 | 7.7 × 107 |
400 | 3 × 1012 | 8 × 10−18 | 10 | 3 × 10−13 | 6 | 5.5 × 107 |
600 | 3 × 1012 | 1.1 × 10−24 | 4.5 | 5.9 × 10−12 | 5 | 5.5 × 107 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiagulskyi, S.; Yatskiv, R.; Faitová, H.; Kučerová, Š.; Roesel, D.; Vaniš, J.; Grym, J.; Veselý, J. Highly Rectifying Heterojunctions Formed by Annealed ZnO Nanorods on GaN Substrates. Nanomaterials 2020, 10, 508. https://doi.org/10.3390/nano10030508
Tiagulskyi S, Yatskiv R, Faitová H, Kučerová Š, Roesel D, Vaniš J, Grym J, Veselý J. Highly Rectifying Heterojunctions Formed by Annealed ZnO Nanorods on GaN Substrates. Nanomaterials. 2020; 10(3):508. https://doi.org/10.3390/nano10030508
Chicago/Turabian StyleTiagulskyi, Stanislav, Roman Yatskiv, Hana Faitová, Šárka Kučerová, David Roesel, Jan Vaniš, Jan Grym, and Jozef Veselý. 2020. "Highly Rectifying Heterojunctions Formed by Annealed ZnO Nanorods on GaN Substrates" Nanomaterials 10, no. 3: 508. https://doi.org/10.3390/nano10030508
APA StyleTiagulskyi, S., Yatskiv, R., Faitová, H., Kučerová, Š., Roesel, D., Vaniš, J., Grym, J., & Veselý, J. (2020). Highly Rectifying Heterojunctions Formed by Annealed ZnO Nanorods on GaN Substrates. Nanomaterials, 10(3), 508. https://doi.org/10.3390/nano10030508