Multi-Scale Analysis and Testing of Tensile Behavior in Polymers with Randomly Oriented and Agglomerated Cellulose Nanofibers
Abstract
:1. Introduction
2. Numerical Procedure
2.1. Definition of Representative Volume Element
2.2. Finite Element Analysis of Representative Volume Element
2.3. Definition of Randomly Oriented CNF-reinforced Composite
2.4. Finite Element Analysis of Randomly Oriented CNF-reinforced Composite Specimen
3. Experimental Procedure
4. Results and Discussion
4.1. Parameters of Representative Volume Element
4.2. CNF/epoxy Composite Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, W.-T.; Chen, F.-F.; Zhu, Y.-J.; Zhang, Y.-G.; Jiang, Y.-Y.; Ma, M.-G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583–4593. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, M.; Keley, M.; Biazar, E. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int. J. Biol. Macromol. 2018, 116, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Nissilä, T.; Hietala, M.; Oksman, K. A method for preparing epoxy–cellulose nanofiber composites with an oriented structure. Compos. Part A 2019, 125, 105515. [Google Scholar] [CrossRef]
- Noguchi, T.; Endo, M.; Niihara, K.; Jinnai, H.; Isogai, A. Cellulose nanofiber/elastomer composites with high tensile strength, modulus, toughness, and thermal stability prepared by high-shear kneading. Compos. Sci. Technol. 2020, 188, 108005. [Google Scholar] [CrossRef]
- Nishino, T.; Takano, K.; Nakamae, K. Elastic modulus of the crystalline regions cellulose polymorphs. J. Polym. Sci. Part B 1995, 33, 1647. [Google Scholar] [CrossRef]
- Bledzki, A.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Sain, M.; Oksman, K. Cellulose nanocomposites. J. Am. Chem. Soc. 2006, 938, 2–8. [Google Scholar]
- Chirayil, C.J.; Mathew, L.; Hassan, P.A.; Mozetic, M.; Thomas, S. Rheological behavior of nanocellulose reinforced unsaturated polyester nanocomposites. Int. J. Biol. Macromol. 2014, 69, 274–281. [Google Scholar] [CrossRef]
- Ansari, F.; Skrifvars, M.; Berglund, L. Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Compos. Sci. Technol. 2015, 117, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Kurita, H.; Yingmei, X.; Katabira, K.; Narita, F. The insert effect of cellulose nanofiber layer on glass fiber-reinforced plastic laminates and their flexural properties. Mater. Des. Process. Commun. 2019, 1, e58. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Kurita, H.; Ishigami, R.; Narita, F. Assessing the flexural properties of epoxy composites with extremely low addition of cellulose nanofiber content. Appl. Sci. 2020, 10, 1159. [Google Scholar] [CrossRef] [Green Version]
- Takeda, T.; Shindo, Y.; Narita, F. Three-dimensional thermoelastic analysis of cracked plain weave glass/epoxy composites at cryogenic temperatures. Compos. Sci. Technol. 2004, 64, 2353–2362. [Google Scholar] [CrossRef]
- Miura, M.; Shindo, Y.; Takeda, T.; Narita, F. Effect of damage on the interlaminar shear properties of hybrid composite laminates at cryogenic temperatures. Compos. Struct. 2010, 93, 124–131. [Google Scholar] [CrossRef]
- Shindo, Y.; Kuronuma, Y.; Takeda, T.; Narita, F.; Fu, S.-Y. Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading. Compos. Part B 2012, 43, 39–43. [Google Scholar] [CrossRef]
- Levy, A.; Papazian, J.M. Tensile properties of short fiber-reinforced SiC/Al composites: Part II. Finite-element analysis. Metall. Trans. A 1990, 21, 411–420. [Google Scholar] [CrossRef]
- Sun, C.T.; Vaidya, R.S. Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 1996, 56, 171–179. [Google Scholar] [CrossRef]
- Takeda, T.; Shindo, Y.; Narita, F.; Mito, Y. Tensile characterization of carbon nanotube-reinforced polymer composites at cryogenic temperatures: Experiments and multiscale simulations. Mater. Trans. 2009, 50, 436–445. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, J.W.; Neale, K.W. Neck propagation. J. Mech. Phys. Solids 1983, 31, 405–426. [Google Scholar] [CrossRef]
- Narita, F.; Shindo, Y.; Takeda, T.; Kuronuma, Y.; Sanada, K. Loading rate-dependent fracture properties and electrical resistance-based crack growth monitoring of polycarbonate reinforced with carbon nanotubes under tension. ASTM J. Test. Eval. 2015, 43, 115–122. [Google Scholar] [CrossRef]
- Johnsen, B.B.; Kinloch, A.J.; Mohammed, R.D.; Taylor, A.C.; Sprenger, S. Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 2007, 48, 530–541. [Google Scholar] [CrossRef]
- Hsieh, T.H.; Kinloch, A.J.; Taylor, A.C.; Kinloch, I. The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J. Mater. Sci. 2011, 46, 7525–7535. [Google Scholar] [CrossRef] [Green Version]
- Zaman, I.; Phan, T.T.; Kuan, H.-C.; Meng, Q.L.L.; Bao, T.; Luong, L.; Youssf, O.; Ma, J. Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 2011, 52, 1603–1611. [Google Scholar] [CrossRef] [Green Version]
- Guevara-Morales, A.; Taylor, A.C. Mechanical and dielectric properties of epoxy–clay nanocomposites. J. Mater. Sci. 2014, 49, 1574–1584. [Google Scholar] [CrossRef]
- Ogasawara, T.; Moon, S.-Y.; Inoue, Y.; Shimamura, Y. Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method. Compos. Sci. Technol. 2011, 71, 1826–1833. [Google Scholar] [CrossRef]
Nanomaterial | Content | Modulus (GPa) | Increase Rate (%) | |
---|---|---|---|---|
Dry CNF | 0 | 3.23 | This study | |
0.73 vol % | 3.30 | 2.1 | ||
2.2 vol % | 3.54 | 10 | ||
3.7 vol % | 3.85 | 19 | ||
Silica | 0 | 2.96 | [20] | |
2.5 vol % | 3.20 | 8.1 | ||
4.9 vol % | 3.42 | 16 | ||
7.1 vol % | 3.57 | 21 | ||
9.6 vol % | 3.60 | 22 | ||
13.4 vol % | 3.85 | 30 | ||
CNT | 0 | 2.90 | [21] | |
0.1 wt.% | 3.01 | 3.8 | ||
0.2 wt.% | 3.11 | 7.2 | ||
0.3 wt.% | 3.26 | 12 | ||
Aligned CNT | 0 | 2.5 | [24] | |
4.5 vol % | 19 | 660 | ||
8.4 vol % | 32 | 1180 | ||
21.4 vol % | 50 | 1900 | ||
0 | 2.69 | [22] | ||
Graphene (GP) | 4.0 wt.% | 2.89 | 7.4 | |
Surface-modified GP | 4.0 wt.% | 3.27 | 22 | |
Clay | 0 | 3.53 | [23] | |
2.0 wt.% | 3.58 | 1.4 | ||
5.0 wt.% | 3.66 | 3.7 | ||
CNF slurry | 0 | 2.20 * | [11] | |
0 | 2.20 * | 26 | ||
0.25 vol % | 3.67 * | 67 | ||
0.74 vol % | 2.84 * | 29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narita, F.; Wang, Y.; Kurita, H.; Suzuki, M. Multi-Scale Analysis and Testing of Tensile Behavior in Polymers with Randomly Oriented and Agglomerated Cellulose Nanofibers. Nanomaterials 2020, 10, 700. https://doi.org/10.3390/nano10040700
Narita F, Wang Y, Kurita H, Suzuki M. Multi-Scale Analysis and Testing of Tensile Behavior in Polymers with Randomly Oriented and Agglomerated Cellulose Nanofibers. Nanomaterials. 2020; 10(4):700. https://doi.org/10.3390/nano10040700
Chicago/Turabian StyleNarita, Fumio, Yinli Wang, Hiroki Kurita, and Masashi Suzuki. 2020. "Multi-Scale Analysis and Testing of Tensile Behavior in Polymers with Randomly Oriented and Agglomerated Cellulose Nanofibers" Nanomaterials 10, no. 4: 700. https://doi.org/10.3390/nano10040700
APA StyleNarita, F., Wang, Y., Kurita, H., & Suzuki, M. (2020). Multi-Scale Analysis and Testing of Tensile Behavior in Polymers with Randomly Oriented and Agglomerated Cellulose Nanofibers. Nanomaterials, 10(4), 700. https://doi.org/10.3390/nano10040700