Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Place and Design
2.2. Sol-Gel Synthesis of Silica Nanoparticles (SiO2-NPs)
2.3. Physical Characterization of Silica Nanoparticles (SiO2-NPs)
2.4. Soil Characterization and Preparing Materials
2.5. Maize Yield and Yield Compound Characteristics
2.6. Post-Harvest Experiment
2.6.1. Insect Culture
2.6.2. Contact Film Toxicity Bioassay
2.7. Statistical Analysis
3. Results
3.1. Growth and Yield Compounds
3.2. Toxicity of SiO2-NPs against Stored Products Insects
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rani, A.; Reddy, R.; Sharma, U.; Mukherjee, P.; Mishra, P.; Kuila, A.; Sim, L.C.; Saravanan, P. A review on the progress of nanostructure materials for energy harnessing and environmental remediation. J. Nanostructure Chem. 2018, 8, 255–291. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Jun, B.-H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Gali, S.; Hebsur, N. Effect of different levels of npk on growth and yield parameters of sweet corn. Karnataka J. Agric. Sci. 2010, 20. [Google Scholar]
- Orosz, F.; Jakab, S.; Losak, T.; Slezak, K. Effect of fertilizer application to sweet corn (zea mays) grown on sandy soil. J. Environ. Biol. 2009, 30, 933–938. [Google Scholar]
- Mohammadi, G.R.; Ghobadi, M.E.; Sheikheh-Poor, S. Phosphate biofertilizer, row spacing and plant density effects on corn (zea mays l.) yield and weed growth. Am. J. Plant Sci. 2012, 3, 425. [Google Scholar] [CrossRef] [Green Version]
- Abass, N.Y.; Elwakil, H.E.; Hemeida, A.A.; Abdelsalam, N.R.; Ye, Z.; Su, B.; Alsaqufi, A.S.; Weng, C.C.; Trudeau, V.L.; Dunham, R.A. Genotype-environment interactions for survival at low and sub-zero temperatures at varying salinity for channel catfish, hybrid catfish and transgenic channel catfish. Aquaculture 2016, 458, 140–148. [Google Scholar] [CrossRef]
- Abdelsalam, N.R. Marker assisted-selection of major traits in egyptian bread wheat (triticum aestivum l.) and wild wheat (aegilops ventricosa tausch). Plant Cell Biotechnol. Mol. Biol. 2014, 15, 67–74. [Google Scholar]
- Abdelsalam, N.R.; Abdel-Megeed, A.; Ali, H.M.; Salem, M.Z.M.; Al-Hayali, M.F.A.; Elshikh, M.S. Genotoxicity effects of silver nanoparticles on wheat (triticum aestivum l.) root tip cells. Ecotoxicol. Environ. Saf. 2018, 155, 76–85. [Google Scholar] [CrossRef]
- Abdelsalam, N.R.; Awad, R.M.; Ali, H.M.; Salem, M.Z.M.; Abdel Latif, K.F.; Elshikh, M.S. Morphological, pomological, and specific molecular marker resources for genetic diversity analyses in fig (ficus carica l.). HortScience 2019, 54, 1299–1309. [Google Scholar] [CrossRef] [Green Version]
- Abdelsalam, N.R.; Botros, W.A.; Khaled, A.E.; Ghonema, M.A.; Hussein, S.G.; Ali, H.M.; Elshikh, M.S. Comparison of uridine diphosphate-glycosyltransferase ugt76g1 genes from some varieties of stevia rebaudiana bertoni. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef]
- Abdelsalam, N.R.; Elshikh, M.S.; Ibrahem, E.G.; Salem, M.Z.M.; Ali, H.M. Genetic and morphological characterization of mangifera indica l. Growing in egypt. HortScience 2018, 53, 1266–1270. [Google Scholar] [CrossRef] [Green Version]
- Abdelsalam, N.R.; Fouda, M.M.G.; Abdel-Megeed, A.; Ajarem, J.; Allam, A.A.; El-Naggar, M.E. Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion. Int. J. Biol. Macromol. 2019, 133, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, N.R.; Kandil, E.E.; Al-Msari, M.A.F.; Al-Jaddadi, M.A.M.; Ali, H.M.; Salem, M.Z.M.; Elshikh, M.S. Effect of foliar application of npk nanoparticle fertilization on yield and genotoxicity in wheat (triticum aestivum l.). Sci. Total Environ. 2019, 653, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, N.R.; Salem, M.Z.M.; Ali, H.M.; Mackled, M.I.; El-Hefny, M.; Elshikh, M.S.; Hatamleh, A.A. Morphological, biochemical, molecular, and oil toxicity properties of taxodium trees from different locations. Ind. Crop. Prod. 2019, 139. [Google Scholar] [CrossRef]
- Zhao, J.; Abdelsalam, N.R.; Khalaf, L.; Chuang, W.P.; Zhao, L.; Smith, C.M.; Carver, B.; Bai, G. Development of single nucleotide polymorphism markers for the wheat curl mite resistance gene cmc4. Crop Sci. 2019, 59, 1567–1575. [Google Scholar] [CrossRef]
- Jaliya, M.; Falaki, A.; Mahmud, M.; Sani, Y. Effect of sowing date and npk fertilizer rate on yield and yield components of quality protein maize (zea mays l.). Arpn J. Agric. Biol. Sci. 2008, 3, 23–29. [Google Scholar]
- Sommer, M.; Kaczorek, D.; Kuzyakov, Y.; Breuer, J. Silicon pools and fluxes in soils and landscapes—a review. J. Plant Nutr. Soil Sci. 2006, 169, 310–329. [Google Scholar] [CrossRef]
- Mattson, N.S.; Leatherwood, W.R. Potassium silicate drenches increase leaf silicon content and affect morphological traits of several floriculture crops grown in a peat-based substrate. HortScience 2010, 45, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2018, 13, 677. [Google Scholar] [CrossRef]
- Ranjbar, M.; Shams, G. Applications of nanotechnology. J. Green Environ. 2009, 34, 85–87. [Google Scholar]
- Prihastanti, E.; Subagyo, A.; Ngadiwiyana, N. Effect of combination of npk and nano silica on the levels of β-carotene and nutritional value of corn (zea mays l.). In Proceedings of theIOP Conference Series: Materials Science and Engineering, Bandung, Indonesia, 18 April 2018; IOP Publishing: Bristol, UK, 2018; p. 012117. [Google Scholar]
- Rains, D.; Epstein, E.; Zasoski, R.; Aslam, M. Active silicon uptake by wheat. Plant Soil 2006, 280, 223–228. [Google Scholar] [CrossRef]
- Suriyaprabha, R.; Karunakaran, G.; Kavitha, K.; Yuvakkumar, R.; Rajendran, V.; Kannan, N. Application of silica nanoparticles in maize to enhance fungal resistance. Iet Nanobiotechnology 2013, 8, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Dahlous, K.A.; Abd-Elkader, O.H.; Fouda, M.M.G.; Al Othman, Z.; El-Faham, A. Eco-friendly method for silver nanoparticles immobilized decorated silica: Synthesis & characterization and preliminary antibacterial activity. J. Taiwan Inst. Chem. Eng. 2019, 95, 324–331. [Google Scholar]
- El-Aassar, M.R.; Fouda, M.M.G.; Kenawy, E.R. Electrospinning of functionalized copolymer nanofibers from poly(acrylonitrile-co-methyl methacrylate). Adv. Polym. Technol. 2013, 32. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Hafez, E.E.; Fouda, M.M.G.; Al-Deyab, S.S. Synthesis, characterization, and antimicrobial activity of poly(acrylonitrile-co-methyl methacrylate) with silver nanoparticles. Appl. Biochem. Biotechnol. 2013, 171, 643–654. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Shaheen, T.I.; Fouda, M.M.G.; Hebeish, A.A. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core–shell silver–gold nanoparticles. Carbohydr. Polym. 2016, 136, 1128–1136. [Google Scholar] [CrossRef]
- Fouda, M.M.G.; Abdel-Mohsen, A.M.; Ebaid, H.; Hassan, I.; Al-Tamimi, J.; Abdel-Rahman, R.M.; Metwalli, A.; Alhazza, I.; Rady, A.; El-Faham, A.; et al. Wound healing of different molecular weight of hyaluronan; in-vivo study. Int. J. Biol. Macromol. 2016, 89, 582–591. [Google Scholar] [CrossRef]
- Fouda, M.M.G.; EL Naggar, M.E.; Shaheen, T.I.; Al Deyab, S.S. Composition Comprising Nanoparticles and a Method for the Preparation Thereof. U.S. Patent No. 9,562,151, 7 February 2017. [Google Scholar]
- Fouda, M.M.G.; El-Aassar, M.R.; Al-Deyab, S.S. Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydr. Polym. 2013, 92, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Fouda, M.M.G.; El-Aassar, M.R.; El Fawal, G.F.; Hafez, E.E.; Masry, S.H.D.; Abdel-Megeed, A. K-carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application. Int. J. Biol. Macromol. 2015, 74, 179–184. [Google Scholar] [CrossRef]
- Hebeish, A.; El-Naggar, M.E.; Fouda, M.M.G.; Ramadan, M.A.; Al-Deyab, S.S.; El-Rafie, M.H. Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydr. Polym. 2011, 86, 936–940. [Google Scholar] [CrossRef]
- El-Naggar, M.A.; Alrajhi, A.M.; Fouda, M.M.; Abdelkareem, E.M.; Thabit, T.M.; Bouqellah, N.A. Effect of silver nanoparticles on toxigenic fusarium spp. And deoxynivalenol secretion in some grains. J. Aoac Int. 2018, 101, 1534–1541. [Google Scholar]
- Přichystalová, H.; Almonasy, N.; Abdel-Mohsen, A.M.; Abdel-Rahman, R.M.; Fouda, M.M.G.; Vojtova, L.; Kobera, L.; Spotz, Z.; Burgert, L.; Jancar, J. Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives. Int. J. Biol. Macromol. 2014, 65, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, T.I.; El-Naggar, M.E.; Hussein, J.S.; El-Bana, M.; Emara, E.; El-Khayat, Z.; Fouda, M.M.G.; Ebaid, H.; Hebeish, A. Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2016, 83, 865–875. [Google Scholar] [CrossRef]
- Textor, T.; Fouda, M.M.G.; Mahltig, B. Deposition of durable thin silver layers onto polyamides employing a heterogeneous tollens’ reaction. Appl. Surf. Sci. 2010, 256, 2337–2342. [Google Scholar] [CrossRef]
- Debnath, N.; Das, S.; Seth, D.; Chandra, R.; Bhattacharya, S.C.; Goswami, A. Entomotoxic effect of silica nanoparticles against sitophilus oryzae (l.). J. Pest Sci. 2011, 84, 99–105. [Google Scholar] [CrossRef]
- Heather, N. Sex-linked resistance to pyrethroids in sitophilus oryzae (l.)(coleoptera: Curculionidae). J. Stored Prod. Res. 1986, 22, 15–20. [Google Scholar] [CrossRef]
- Rajendran, S. Responses of phosphine-resistant strains of two stored-product insect pests to changing concentrations of phosphine. Pestic. Sci. 1994, 40, 183–186. [Google Scholar] [CrossRef]
- Daglish, G.J.; Collins, P.J.; Pavic, H.; Kopittke, R.A. Effects of time and concentration on mortality of phosphine-resistant sitophilus oryzae (l) fumigated with phosphine. Pest Manag. Sci. Former. Pestic. Sci. 2002, 58, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Benhalima, H.; Chaudhry, M.; Mills, K.; Price, N. Phosphine resistance in stored-product insects collected from various grain storage facilities in morocco. J. Stored Prod. Res. 2004, 40, 241–249. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen—inorganic forms 1. Methods Soil Anal. Part 2. Chem. Microbiol. Prop. 1982, 643–698. [Google Scholar]
- AOAC. Official methods of analysis of the association of official analytical chemists; Keneth, H., Ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Chakraborty, S.; Mondal, P. Specific and age female fecundity life table of callosobruchus chinensis linn. On green gram. Int. J. Pure Appl. Biosci. 2015, 3, 284–291. [Google Scholar]
- Su, G.C.; Zabik, M.J. Photochemistry of bioactive compounds. Photolysis of m-(n, n-dimethylformamidine) phenyl n-methylcarbamate hydrochloride in water. J. Agric. Food Chem. 1972, 20, 642–644. [Google Scholar] [CrossRef] [PubMed]
- Finney, D. Statistical logic in the monitoring of reactions to therapeutic drugs. Methods Inf. Med. 1971, 10, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Gomez, K.; Gomez, A. Statistical procedures for agricultural research; John wiley & sons: New York, NY, USA, 1984; Volume 680. [Google Scholar]
- Ver, C. 6.311 (2005). Cohort software798 light house Ave. PMB320, Monterey, CA93940, and USA. Available online: http://www.cohort.com/DownloadCoStatPart2.html.
- Sumida, H. Plant-available silicon in paddy soils. In Proceedings of the Second Silicon in Agriculture Conference, Tsuruoka, Yamagata, Japan, 22–26 August 2002; pp. 43–49. [Google Scholar]
- Kyuma, K. Paddy Soil Science; Kyoto University Press: Kyoto, Japan, 2004. [Google Scholar]
- Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N. Growth and physiological responses of maize (zea mays l.) to porous silica nanoparticles in soil. J. Nanoparticle Res. 2012, 14, 1294. [Google Scholar] [CrossRef]
- Farooq, M.A.; Dietz, K.-J. Silicon as versatile player in plant and human biology: Overlooked and poorly understood. Front. Plant Sci. 2015, 6, 994. [Google Scholar] [CrossRef] [Green Version]
- Dung, P.D.; Ngoc, L.S.; Duy, N.N.; Thuy, N.N.; Truc, L.T.M.; Van Le, B.; Van Phu, D.; Hien, N.Q. Effect of nanosilica from rice husk on the growth enhancement of chili plant (capsicum frutescens l.). Vietnam J. Sci. Technol. 2016, 54, 607. [Google Scholar] [CrossRef] [Green Version]
- Miao, B.-H.; Han, X.-G.; Zhang, W.-H. The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann. Bot. 2010, 105, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Yuvakkumar, R.; Elango, V.; Rajendran, V.; Kannan, N.S.; Prabu, P. Influence of nanosilica powder on the growth of maize crop (zea mays l.). Int. J. Green Nanotechnol. 2011, 3, 180–190. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Al-Whaibi, M.H. Role of nano-sio2 in germination of tomato (lycopersicum esculentum seeds mill.). Saudi J. Biol. Sci. 2014, 21, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Epstein, E. Silicon in plants: Facts vs. Concepts. In Studies in plant science; Elsevier: Amsterdam, The Netherlands, 2001; Volume 8, pp. 1–15. [Google Scholar]
- Hashemi, A.; Abdolzadeh, A.; Sadeghipour, H.R. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, brassica napus l., plants. Soil Sci. Plant Nutr. 2010, 56, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Tao, G.; Xie, Y.; Cai, X. Physiological effects under the condition of spraying nano-sio2 onto the indocalamus barbatus mcclure leaves. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2012, 36, 161–164. [Google Scholar]
- Haghighi, M.; Afifipour, Z.; Mozafarian, M. The effect of n-si on tomato seed germination under salinity levels. J. Biol. Env. Sci. 2012, 6, 87–90. [Google Scholar]
- Sabaghnia, N.; Janmohammadi, M. Graphic analysis of nano-silicon by salinity stress interaction on germination properties of lentil using the biplot method. Agric. For./Poljopr. I Sumar. 2014, 60. [Google Scholar]
- Liang, Y.; Chen, Q.; Liu, Q.; Zhang, W.; Ding, R. Exogenous silicon (si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (hordeum vulgarel.). J. Plant Physiol. 2003, 160, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Alsaeedi, A.H.; El-Ramady, H.; Alshaal, T.; El-Garawani, M.; Elhawat, N.; Almohsen, M. Engineered silica nanoparticles alleviate the detrimental effects of na+ stress on germination and growth of common bean (phaseolus vulgaris). Environ. Sci. Pollut. Res. 2017, 24, 21917–21928. [Google Scholar] [CrossRef] [PubMed]
- Azimi, R.; Borzelabad, M.J.; Feizi, H.; Azimi, A. Interaction of sio2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (agropyron elongatum l.). Pol. J. Chem. Technol. 2014, 16, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.M.; De Silva, D.M.; Peralta, E.; Fajardo, A.; Peralta, M. Effects of nanosilica powder from rice hull ash on seed germination of tomato (lycopersicon esculentum). Philipp. E-J. Appl. Res. Dev. (Pejard) 2015, 5, 11–22. [Google Scholar]
- Qados, A.M.A. Effects of salicylic acid on growth, yield and chemical contents of pepper (capsicum annuum l) plants grown under salt stress conditions. Int. J. Agric. Crop Sci. 2015, 8, 107. [Google Scholar]
- Tahir, M.A.; Rahmatullah, T.; Aziz, M.; Ashraf, S.; Kanwal, S.; Maqsood, M.A. Beneficial effects of silicon in wheat (triticum aestivum l.) under salinity stress. Pak. J. Bot. 2006, 38, 1715–1722. [Google Scholar]
- Yeo, A.; Flowers, S.; Rao, G.; Welfare, K.; Senanayake, N.; Flowers, T. Silicon reduces sodium uptake in rice (oryza sativa l.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. PlantCell Environ. 1999, 22, 559–565. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, C.; Wen, J.; Wu, G.; Tao, M. Research of the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism. Soybean Sci. 2002, 21, 168–171. [Google Scholar]
- Tantawy, A.; Salama, Y.; El-Nemr, M.; Abdel-Mawgoud, A. Nano silicon application improves salinity tolerance of sweet pepper plants. Int. J. Chemtech Res. 2015, 8, 11–17. [Google Scholar]
- Rastogi, A.; Tripathi, D.K.; Yadav, S.; Chauhan, D.K.; Živčák, M.; Ghorbanpour, M.; El-Sheery, N.I.; Brestic, M. Application of silicon nanoparticles in agriculture. 3 Biotech 2019, 9, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.Y.; Baek, M.J.; Choi, E.S.; Woo, S.; Kim, J.H.; Kim, T.J.; Jung, J.C.; Chae, K.S.; Chang, Y.; Lee, G.H. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced t 1 mri contrast agent: Account for large longitudinal relaxivity, optimal particle diameter, and in vivo t 1 mr images. Acs Nano 2009, 3, 3663–3669. [Google Scholar] [CrossRef]
- Stadler, T.; Buteler, M.; Weaver, D.K. Novel use of nanostructured alumina as an insecticide. Pest Manag. Sci. Former. Pestic. Sci. 2010, 66, 577–579. [Google Scholar] [CrossRef]
- Onyeka, T.; Owolade, O.; Ogunjobi, A.; Dixon, A.G.; Okechukwu, R.; Bamkefa, B. Prevalence and severity of bacterial blight and anthracnose diseases of cassava in different agro-ecological zones of nigeria. Afr. J. Agric. Res. 2008, 3, 297–304. [Google Scholar]
- Yang, F.-L.; Li, X.-G.; Zhu, F.; Lei, C.-L. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against tribolium castaneum (herbst)(coleoptera: Tenebrionidae). J. Agric. Food Chem. 2009, 57, 10156–10162. [Google Scholar] [CrossRef]
- Amal, M.; Hamza, M.; Asmaa, M.; El, G.; El-Samahy, M. A new silica nanoparticles formulation as stored product protectant. Egy. J. Plant Pro. Res. 2015, 3, 88–103. [Google Scholar]
- Barik, T.K.; Sahu, B.; Swain, V. Nanosilica-from medicine to pest control. Parasitol. Res. 2008, 103, 253–258. [Google Scholar] [CrossRef]
Soil Properties | Season | |
---|---|---|
2018 | 2019 | |
A) Mechanical analysis: | ||
Clay% | 41 | 40 |
Sand% | 29 | 28 |
Silt% | 30 | 32 |
Soil texture | Clay loam soil | |
B) Chemical properties | ||
pH (1:1) | 8 | 8.01 |
E.C. (dS/m) (1:2) | 2.6 | 2.5 |
1) Soluble cations (1:2) (cmol/kg soil) | ||
K+ | 1.52 | 1.44 |
Ca++ | 8.4 | 9.11 |
Mg++ | 12 | 12.2 |
Na++ | 11.5 | 10.5 |
2) Soluble anions (1:2) (cmol/kg soil) | ||
CO3−2 + HCO3− | 1.9 | 1.8 |
Cl− | 19.4 | 18.9 |
SO4−2 | 12 | 12.5 |
Calcium carbonate (%) | 6.5 | 6 |
Total nitrogen% | 1.5 | 1.91 |
Available phosphate (mg/kg) | 3.3 | 3.45 |
Available K (mg/kg) | 2.9 | 2.88 |
Organic matter (%) | 1.41 | 1.4 |
Treatment | Plant Attributes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Leaf Chlorophyll Content | Plant Height (cm) | Ear Length (cm) | No. of Grains/Row | No. of Grains/Ear | 100- Grain Weight | Grain Yield (t/fed) | Straw Yield (t/fed) | Biological Yield(t/fed) | Harvest Index (%) | Grain Protein (%) | |
A) Mineral NPK Fertilizers | |||||||||||
0% RD | 33.03 | 172.38 | 18.50 | 37.42 | 523.83 | 38.23 | 3.86 | 4.90 | 8.76 | 44.06 | 7.99 |
50% RD | 38.35 | 191.17 | 19.92 | 40.00 | 560.00 | 42.38 | 4.57 | 6.07 | 10.64 | 42.95 | 9.85 |
100% RD | 38.72 | 195.79 | 20.17 | 41.67 | 583.33 | 43.00 | 4.79 | 6.29 | 11.08 | 43.23 | 10.18 |
LSD0.05 (A) | 1.49 | 13.22 | 0.68 | 0.60 | 8.36 | 2.39 | 0.18 | 0.29 | 0.22 | 1.84 | 0.21 |
B) Nano Silica (SiO2-NPs) Concentration (g/kg) | |||||||||||
0.0 ppm | 32.07 | 161.61 | 17.56 | 36.22 | 507.11 | 36.22 | 3.60 | 5.04 | 8.64 | 41.67 | 7.91 |
2.5 ppm | 36.24 | 185.11 | 19.28 | 39.33 | 550.67 | 41.39 | 4.27 | 5.80 | 10.07 | 42.40 | 9.24 |
5.0 ppm | 40.27 | 198.07 | 20.50 | 41.56 | 581.78 | 42.63 | 4.76 | 5.93 | 10.69 | 44.53 | 9.83 |
10.0 ppm | 38.21 | 201.0 | 20.78 | 41.77 | 584.00 | 44.56 | 5.00 | 6.24 | 11.24 | 44.48 | 10.37 |
LSD0.05 (B) | 3.03 | 8.45 | 1.08 | 1.21 | 16.93 | 1.19 | 0.23 | 0.38 | 0.50 | 2.02 | 0.46 |
Interaction | |||||||||||
AB | * | * | * | * | * | * | * | * | * | * | * |
NPK | Nano Silica (g/kg) | Leaf Chlorophyll Content | Plant Height (cm) | Ear Length (cm) | No. of Grains/Row | No. of Grains/Ear | 100- Grain Weight | Grain Yield (t/fed) | Straw Yield (t/fed) | Biological Yield(t/fed) | Harvest Index (%) | Grain Protein (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0% | 0.0 | 28.20 | 160.00 | 17.00 | 34.00 | 476.00 | 31.67 | 3.30 | 4.50 | 7.80 | 42.31 | 7.80 |
2.5 | 34.00 | 171.00 | 19.00 | 36.33 | 508.67 | 39.33 | 3.94 | 5.03 | 8.97 | 43.92 | 8.97 | |
5.0 | 35.93 | 173.53 | 21.33 | 39.00 | 546.00 | 40.57 | 4.07 | 5.07 | 9.14 | 44.53 | 9.14 | |
10.0 | 34.00 | 185.00 | 22.31 | 40.33 | 564.67 | 41.33 | 4.13 | 5.03 | 9.16 | 45.09 | 9.17 | |
50% | 0 | 29.03 | 151.00 | 17.00 | 34.33 | 480.67 | 36.67 | 3.33 | 5.13 | 8.46 | 39.36 | 8.47 |
2.5 | 37.13 | 185.00 | 19.00 | 39.67 | 555.33 | 41.83 | 4.17 | 6.00 | 10.17 | 41.00 | 10.17 | |
5.0 | 42.07 | 206.33 | 21.33 | 42.00 | 588.00 | 43.33 | 5.20 | 6.03 | 11.23 | 46.30 | 11.23 | |
10.0 | 45.13 | 222.33 | 22.33 | 44.00 | 616.00 | 47.67 | 5.59 | 7.09 | 12.68 | 44.09 | 12.69 | |
100% | 0 | 38.97 | 173.83 | 18.67 | 40.33 | 564.67 | 40.33 | 4.17 | 5.50 | 9.67 | 43.12 | 9.67 |
2.5 | 37.60 | 199.33 | 19.83 | 42.00 | 588.00 | 43.00 | 4.70 | 6.37 | 11.07 | 42.46 | 11.07 | |
5.0 | 42.80 | 214.33 | 21.17 | 43.67 | 611.33 | 44.00 | 5.02 | 6.69 | 11.71 | 42.87 | 11.71 | |
10.0 | 35.50 | 195.67 | 21.00 | 40.67 | 569.33 | 44.67 | 5.27 | 6.60 | 11.87 | 44.40 | 11.87 | |
LSD0.05 (AB) | 5.25 | 14.64 | 1.87 | 2.09 | 29.32 | 2.05 | 0.40 | 0.66 | 0.86 | 3.19 | 0.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Naggar, M.E.; Abdelsalam, N.R.; Fouda, M.M.G.; Mackled, M.I.; Al-Jaddadi, M.A.M.; Ali, H.M.; Siddiqui, M.H.; Kandil, E.E. Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest. Nanomaterials 2020, 10, 739. https://doi.org/10.3390/nano10040739
El-Naggar ME, Abdelsalam NR, Fouda MMG, Mackled MI, Al-Jaddadi MAM, Ali HM, Siddiqui MH, Kandil EE. Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest. Nanomaterials. 2020; 10(4):739. https://doi.org/10.3390/nano10040739
Chicago/Turabian StyleEl-Naggar, Mehrez E., Nader R. Abdelsalam, Moustafa M.G. Fouda, Marwa I. Mackled, Malik A.M. Al-Jaddadi, Hayssam M. Ali, Manzer H. Siddiqui, and Essam E. Kandil. 2020. "Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest" Nanomaterials 10, no. 4: 739. https://doi.org/10.3390/nano10040739
APA StyleEl-Naggar, M. E., Abdelsalam, N. R., Fouda, M. M. G., Mackled, M. I., Al-Jaddadi, M. A. M., Ali, H. M., Siddiqui, M. H., & Kandil, E. E. (2020). Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest. Nanomaterials, 10(4), 739. https://doi.org/10.3390/nano10040739