Superior Electrocatalytic Activity of MoS2-Graphene as Superlattice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods-Exfoliation MoS2 and Preparation of MoS2/fl-G
2.2. Methods-Catalytic Measurements
3. Results
Catalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feng, J.-X.; Xu, H.; Ye, S.-H.; Ouyang, G.; Tong, Y.-X.; Li, G.-R. Silica-Polypyrrole hybrids as high-performance metal-free Electrocatalysts for the hydrogen evolution reaction in neutral media. Angew. Chem. Int. Ed. 2017, 56, 8120–8124. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Li, S.; Wu, F.; Saqib, M.; Luque, R.; Xu, G. Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting. Energy Environ. Sci. 2016, 9, 1210–1214. [Google Scholar] [CrossRef]
- Zhang, Z.; Yi, Z.; Wang, J.; Tian, X.; Xu, P.; Shi, G.; Wang, S.J. Nitrogen-enriched polydopamine analogue-derived defect-rich porous carbon as a bifunctional metal-free electrocatalyst for highly efficient overall water splitting. J. Mater. Chem. A 2017, 5, 17064–17072. [Google Scholar] [CrossRef]
- Zhong, H.-X.; Zhang, Q.; Wang, J.; Zhang, X.-B.; Wei, X.-L.; Wu, Z.-J.; Li, K.; Meng, F.-L.; Bao, D.; Yan, J.-M.; et al. Engineering ultrathin C3N4 quantum dots on graphene as a metal-free water reduction electrocatalyst. ACS Catal. 2018, 8, 3965–3970. [Google Scholar] [CrossRef]
- Sadighi, Z.; Liu, J.; Zhao, L.; Ciucci, F.; Kim, J.-K. Metallic MoS2 nanosheets: Multifunctional electrocatalyst for the ORR, OER and Li-O2 batteries. Nanoscale 2018, 10, 22549–22559. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, L.; Xu, G.; Ma, X.; Wang, W.; Song, H.; Jia, D. Metal-organic-framework-derived hollow CoSx@MoS2 microcubes as superior bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions. ACS Sustain. Chem. Eng. 2018, 6, 12961–12968. [Google Scholar] [CrossRef]
- Wang, C. Co doped MoS2 as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions. Int. J. Electrochem. Sci. 2019, 9805–9814. [Google Scholar] [CrossRef]
- Xue, J.-Y.; Li, F.-L.; Zhao, Z.-Y.; Li, C.; Ni, C.-Y.; Gu, H.-W.; Braunstein, P.; Huang, X.-Q.; Lang, J.-P. A hierarchically-assembled Fe-MoS2/Ni3S2/nickel foam electrocatalyst for efficient water splitting. Dalton Trans. 2019, 48, 12186–12192. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, H.; Gao, H.; Cao, R.; Huang, J.; Xu, X. One-pot Synthesis of CdS Irregular nanospheres hybridized with oxygen-incorporated defect-rich mos2 ultrathin nanosheets for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 23635–23646. [Google Scholar] [CrossRef]
- Askari, M.B.; Salarizadeh, P.; Seifi, M.; Rozati, S. Electrocatalytic properties of CoS2/MoS2/rGO as a non-noble dual metal electrocatalyst: The investigation of hydrogen evolution and methanol oxidation. J. Phys. Chem. Solids 2019, 135. [Google Scholar] [CrossRef]
- Guruprasad, K.; Maiyalagan, T. Shanmugam, Phosphorus doped MoS2 nanosheet promoted with nitrogen, sulphur dual doped reduced graphene oxide as an effective electrocatalyst for hydrogen evolution reaction. ACS Appl. Energy Mater. 2019, 2, 6184. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.; Tian, Y.; You, J.; Yang, C.; Su, J.; Li, Y.; Gao, Y.; Gu, H. In situ synthesis of MoS 2 /graphene nanosheets as free-standing and flexible electrode paper for high-efficiency hydrogen evolution reaction. RSC Adv. 2018, 8, 10698. [Google Scholar] [CrossRef] [Green Version]
- Adarakatti, P.; Mahanthappa, M.; Hughes, J.; Rowley-Neale, S.; Smith, G.; Siddaramanna, A.; Banks, C. MoS2-graphene-CuNi2S4 nanocomposite an efficient electrocatalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 16069. [Google Scholar] [CrossRef] [Green Version]
- Ge, R.; Li, W.; Huo, J.; Liao, T.; Cheng, N.; Du, Y.; Zhu, M.; Li, Y.; Zhang, J. Metal-ion bridged high conductive RGO-M-MoS2 (M = Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) composite electrocatalysts for photo-assisted hydrogen evolution. Appl. Catal. B Environ. 2019, 246, 129–139. [Google Scholar] [CrossRef]
- Han, X.; Tong, X.; Liu, X.; Chen, A.; Wen, X.; Yang, N.; Guo, X.-Y. Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene. ACS Catal. 2018, 8, 1828. [Google Scholar] [CrossRef]
- He, J.; Fernandez, C.; Primo, A.; Garcia, H. One-step preparation of large area films of oriented MoS2 nanoparticles on multilayer graphene and its electrocatalytic activity for hydrogen evolution. Materials 2018, 11, 168. [Google Scholar]
- Latorre-Sanchez, M.; Esteve-Adell, I.; Primo, A.; Garcia, H. Innovative preparation of MoS2-graphene heterostructures based on alginate containing (NH4)2MoS4 and their photocatalytic activity for H2 generation. Carbon 2015, 81, 587. [Google Scholar] [CrossRef]
- Primo, A.; He, J.; Jurca, B.; Cojocaru, B.; Bucur, C.; Parvulescu, V.I.; Garcia, H. CO2 methanation catalyzed by oriented MoS2 nanoplatelets supported on few layers graphene. Appl. Catal. B 2019, 245, 351. [Google Scholar] [CrossRef]
- Rendon-Patino, A.; Domenech, A.; Garcia, H.; Primo, A. A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm × cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties. Nanoscale 2019, 11, 2981. [Google Scholar] [CrossRef]
- Davies, A.; Albar, J.E.; Summerfield, A.; Thomas, J.C.; Cheng, T.S.; Korolkov, V.V.; Stapleton, E.; Wrigley, J.; Goodey, N.L.; Mellor, C.J.; et al. Lattice-matched epitaxial graphene grown on boron nitride. Nano Lett. 2018, 18, 498. [Google Scholar] [CrossRef]
- Zuo, Z.; Xu, Z.; Zheng, R.; Khanaki, A.; Zheng, J.-G.; Liu, J. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy. Sci. Rep. 2015, 5, 14760. [Google Scholar] [CrossRef]
- Hirai, H.; Tsuchiya, H.; Kamakura, Y.; Mori, N.; Ogawa, M. Electron mobility calculation for graphene on substrates. J. Appl. Phys. (Melville N. Y. USA) 2014, 116. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Shin, H.-J.; Lee, J.; Lee, I.-Y.; Kim, G.-H.; Choi, J.-Y.; Kim, S.-W. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 2018, 12, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Saito, S.; Cohen, M.L. Lattice matching and electronic structure of finite-layer graphene/h-BN thin films. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 115424. [Google Scholar] [CrossRef]
- Li, X.D.; Yu, S.; Wu, S.Q.; Wen, Y.H.; Zhou, S.; Zhu, Z.Z. Structural and electronic properties of superlattice composed of graphene and monolayer MoS2. J. Phys. Chem. C 2013, 117, 15347. [Google Scholar] [CrossRef]
- Xiong, P.; Ma, R.; Sakai, N.; Nurdiwijayanto, L.; Sasaki, T. Unilamellar Metallic MoS2/graphene superlattice for efficient sodium storage and hydrogen evolution. ACS Energy Lett. 2018, 3, 997. [Google Scholar] [CrossRef]
- Rendón-Patiño, A.; Niu, J.; Doménech-Carbó, A.; García, H.; Primo, A. Polystyrene as graphene film and 3D graphene sponge precursor. Nanomaterials 2019, 9, 101. [Google Scholar]
- Gao, M.-R.; Liang, J.-X.; Zheng, Y.-R.; Xu, Y.-F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S.-H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982. [Google Scholar] [CrossRef]
- Ding, Q.; Song, B.; Xu, P.; Jin, S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 2016, 1, 699–726. [Google Scholar] [CrossRef] [Green Version]
Material | Eonset (V vs. RHE) | Tafel Slope (mV per Decade) | Jo (mA cm−2) |
---|---|---|---|
Pt/C | 0.0 | 30 | 7.1 × 10−1 |
MoS2 | −0.24 | 101 | 9.1 × 10−4 |
s-MoS2/G | −0.60 | 54 | 7.9 × 10−3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rendón-Patiño, A.; Domenech-Carbó, A.; Primo, A.; García, H. Superior Electrocatalytic Activity of MoS2-Graphene as Superlattice. Nanomaterials 2020, 10, 839. https://doi.org/10.3390/nano10050839
Rendón-Patiño A, Domenech-Carbó A, Primo A, García H. Superior Electrocatalytic Activity of MoS2-Graphene as Superlattice. Nanomaterials. 2020; 10(5):839. https://doi.org/10.3390/nano10050839
Chicago/Turabian StyleRendón-Patiño, Alejandra, Antonio Domenech-Carbó, Ana Primo, and Hermenegildo García. 2020. "Superior Electrocatalytic Activity of MoS2-Graphene as Superlattice" Nanomaterials 10, no. 5: 839. https://doi.org/10.3390/nano10050839
APA StyleRendón-Patiño, A., Domenech-Carbó, A., Primo, A., & García, H. (2020). Superior Electrocatalytic Activity of MoS2-Graphene as Superlattice. Nanomaterials, 10(5), 839. https://doi.org/10.3390/nano10050839