Enhancement of Birefringence in Reduced Graphene Oxide Doped Liquid Crystal
Abstract
:1. Introduction
2. Design and Fabrication
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qi, H.; Kinkead, B.; Hegmann, T. Effects of functionalized metal and semiconductor nanoparticles in nematic liquid crystal phases. Integr. Optoelectron. Devices 2008 2008, 6911, 691106. [Google Scholar] [CrossRef]
- Yoshida, H.; Kawamoto, K.; Kubo, H.; Tsuda, T.; Fujii, A.; Kuwabata, S.; Ozaki, M. Nanoparticle-Dispersed Liquid Crystals Fabricated by Sputter Doping. Adv. Mater. 2010, 22, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Tanaka, Y.; Kawamoto, K.; Kubo, H.; Tsuda, T.; Fujii, A.; Kuwabata, S.; Kikuchi, H.; Ozaki, M. Nanoparticle-Stabilized Cholesteric Blue Phases. Appl. Phys. Express 2009, 2, 121501. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, S.P.; Biradar, A.; Choudhary, A.; Sreenivas, K. Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals. Appl. Phys. Lett. 2007, 91, 023120. [Google Scholar] [CrossRef]
- Kumar, A.; Prakash, J.; Mehta, D.S.; Biradar, A.; Haase, W. Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals. Appl. Phys. Lett. 2009, 95, 23117. [Google Scholar] [CrossRef] [Green Version]
- Ha, Y.-S.; Kim, H.-J.; Park, H.-G.; Seo, D.-S. Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping. Opt. Express 2012, 20, 6448–6455. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kang, Y.-G.; Park, H.-G.; Lee, K.-M.; Yang, S.; Jung, H.-Y.; Seo, D.-S. Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices. Liq. Cryst. 2011, 38, 871–875. [Google Scholar] [CrossRef]
- Shandryuk, G.A.; Matukhina, E.V.; Vasil’Ev, R.B.; Rebrov, A.; Bondarenko, G.N.; Merekalov, A.; Gas’Kov, A.M.; Talroze, R.V. Effect of H-Bonded Liquid Crystal Polymers on CdSe Quantum Dot Alignment within Nanocomposite. Macromology 2008, 41, 2178–2185. [Google Scholar] [CrossRef]
- Tal’Roze, R.V.; Shandryuk, G.A.; Merekalov, A.; Shatalova, A.M.; Otmakhova, O.A. Alignment of nanoparticles in polymer matrices. Polym. Sci. Ser. A 2009, 51, 1194–1203. [Google Scholar] [CrossRef]
- Duran, H.; Gazdecki, B.; Yamashita, A.; Kyu, T. Effect of carbon nanotubes on phase transitions of nematic liquid crystals. Liq. Cryst. 2005, 32, 815–821. [Google Scholar] [CrossRef]
- Lee, W.-K.; Choi, Y.S.; Kang, Y.-G.; Sung, J.; Seo, D.-S.; Park, C. Super-Fast Switching of Twisted Nematic Liquid Crystals on 2D Single Wall Carbon Nanotube Networks. Adv. Funct. Mater. 2011, 21, 3843–3850. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Chien, L.-C. Carbon nanotube doped liquid crystal OCB cells: Physical and electro-optical properties. Opt. Express 2008, 16, 12777–12785. [Google Scholar] [CrossRef] [PubMed]
- Glushchenko, A.; Cheon, C.I.; West, J.; Li, F.; Buyuktanir, E.; Reznikov, Y.; Buchnev, A. Ferroelectric Particles in Liquid Crystals: Recent Frontiers. Mol. Cryst. Liq. Cryst. 2006, 453, 227–237. [Google Scholar] [CrossRef]
- Kurochkin, O.; Buchnev, O.; Iljin, A.; Park, S.K.; Kwon, S.B.; Grabar, A.A.; Reznikov, Y. A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal. J. Opt. A Pure Appl. Opt. 2009, 11, 24003. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Ions in liquid crystals doped with nanoparticles: Conventional and counterintuitive temperature effects. Liq. Cryst. 2017, 44, 1402–1408. [Google Scholar] [CrossRef]
- Stewart, I.W. The Static and Dynamic Continuum Theory of Liquid Crystals; Informa UK Limited: Colchester, UK, 2019. [Google Scholar]
- Jakeman, E.; Raynes, E. Electro-optic response times in liquid crystals. Phys. Lett. A 1972, 39, 69–70. [Google Scholar] [CrossRef]
- Alam, T.M.; Pearce, C.J. Impact of graphene incorporation on the orientational order of graphene/liquid crystal composites. Chem. Phys. Lett. 2014, 592, 7–13. [Google Scholar] [CrossRef]
- Wu, P.-C.; Lee, W. Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets. Appl. Phys. Lett. 2013, 102, 162904. [Google Scholar] [CrossRef] [Green Version]
- Basu, R.; Kinnamon, D.; Garvey, A. Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal. Appl. Phys. Lett. 2015, 106, 201909. [Google Scholar] [CrossRef] [Green Version]
- Tie, W.; Bhattacharyya, S.S.; Gao, Y.; Zheng, Z.; Shin, E.J.; Kim, T.H.; Kim, M.; Lee, J.H.; Lee, S.H. Dynamic Response of Graphitic Flakes in Nematic Liquid Crystals: Confinement and Host Effect. Nanomaterials 2017, 7, 250. [Google Scholar] [CrossRef] [Green Version]
- Basu, R. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal. Appl. Phys. Lett. 2014, 105, 112905. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Mishra, R.K.; Manda, R.; Murali, G.; Kim, T.-H.; Lee, M.-H.; Yun, M.; Kundu, S.; Kim, I.S.; Lee, S.H. Reduced graphene oxide (RGO) enriched polymer network for highly-enhanced electro-optic performance of a liquid crystalline blue phase. RSC Adv. 2017, 7, 16650–16654. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Ledezma, C.; Puech, N.; Zakri, C.; Grelet, E.; Moulton, S.E.; Wallace, G.; Gambhir, S.; Blanc, C.; Anglaret, E.; Poulin, P. Liquid Crystallinity and Dimensions of Surfactant-Stabilized Sheets of Reduced Graphene Oxide. J. Phys. Chem. Lett. 2012, 3, 2425–2430. [Google Scholar] [CrossRef] [PubMed]
- Mrukiewicz, M.; Kowiorski, K.; Perkowski, P.; Mazur, R.; Djas, M. Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes. Beilstein J. Nanotechnol. 2019, 10, 71–78. [Google Scholar] [CrossRef]
- O’Konski, C.T. Electric properties of macromolecules. V. theory of ionic polarization in polyelectrolytes. J. Phys. Chem. 1960, 64, 605–619. [Google Scholar] [CrossRef]
- Dozov, I.; Paineau, E.; Davidson, P.; Antonova, K.; Baravian, C.; Bihannic, I.; Michot, L.J. Electric-Field-Induced Perfect Anti-Nematic Order in Isotropic Aqueous Suspensions of a Natural Beidellite Clay. J. Phys. Chem. B 2011, 115, 7751–7765. [Google Scholar] [CrossRef]
- Gorkunov, M.V.; Osipov, M.A. Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles. Soft Matter 2011, 7, 4348. [Google Scholar] [CrossRef]
- Zhang, Z.; You, Z.; Chu, D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light. Sci. Appl. 2014, 3, e213. [Google Scholar] [CrossRef]
- Yan, K.; Guo, Q.; Wu, F.; Sun, J.; Zhao, H.; Kwok, H.-S. Polarization-independent nematic liquid crystal phase modulator based on optical compensation with sub-millisecond response. Opt. Express 2019, 27, 9925–9932. [Google Scholar] [CrossRef]
- Zvyagin, A.V.; Sampson, D. Achromatic optical phase shifter–modulator. Opt. Lett. 2001, 26, 187. [Google Scholar] [CrossRef]
- Love, G.D. Liquid-crystal phase modulator for unpolarized light. Appl. Opt. 1993, 32, 2222. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Mathine, D.L.; Valley, P.; Äyräs, P.; Haddock, J.N.; Giridhar, M.S.; Williby, G.; Schwiegerling, J.; Meredith, G.R.; Kippelen, B.; et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. Proc. Natl. Acad. Sci. USA 2006, 103, 6100–6104. [Google Scholar] [CrossRef] [Green Version]
- Moreno, I.; Iemmi, C.; Márquez, A.; Campos, J.; Yzuel, M. Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display. Appl. Opt. 2004, 43, 6278–6284. [Google Scholar] [CrossRef]
- Li, G.; Valley, P.; Giridhar, M.S.; Mathine, D.L.; Meredith, G.; Haddock, J.N.; Kippelen, B.; Peyghambarian, N. Large-aperture switchable thin diffractive lens with interleaved electrode patterns. Appl. Phys. Lett. 2006, 89, 141120. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.B.; Kang, D.; Jung, J.; Park, H.; Hahn, J.; Choi, M.; Bae, J.-H.; Kim, H.; Park, J. Compact vari-focal augmented reality display based on ultrathin, polarization-insensitive, and adaptive liquid crystal lens. Opt. Lasers Eng. 2020, 128, 106006. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Yan, Q.; Chen, Y.; Li, X.; Cheng, Z. Dispersion and assembly of reduced graphene oxide in chiral nematic liquid crystals by charged two-dimensional nanosurfactants. Chem. Eng. J. 2018, 334, 1023–1033. [Google Scholar] [CrossRef]
- Park, S.; Hu, Y.; Hwang, J.O.; Lee, E.-S.; Casabianca, L.B.; Cai, W.; Potts, J.R.; Ha, H.-W.; Chen, S.; Oh, J.; et al. Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat. Commun. 2012, 3, 638. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Qiu, Y.; Zhang, L.; Zhang, X. Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Adv. 2017, 7, 52337–52344. [Google Scholar] [CrossRef] [Green Version]
- Rui, L.; Liu, J.; Li, J.-L.; Weng, Y.; Dou, Y.; Yuan, B.; Yang, K.; Ma, Y. Reduced graphene oxide directed self-assembly of phospholipid monolayers in liquid and gel phases. Biochim. Biophys. Acta (BBA) Biomembr. 2015, 1848, 1203–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solís-Fernández, P.; Paredes, J.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. Determining the thickness of chemically modified graphenes by scanning probe microscopy. Carbon 2010, 48, 2657–2660. [Google Scholar] [CrossRef]
- Tsukruk, V.V.; Reneker, D.H. Scanning probe microscopy of organic and polymeric films: from self-assembled monolayers to composite multilayers. Polymer 1995, 36, 1791–1808. [Google Scholar] [CrossRef]
- Iwakabe, Y.; Hara, M.; Kondo, K.; Tochigi, K.; Mukoh, A.; Yamada, A.; Garito, A.F.; Sasabe, H. Correlation Between Bulk Orderings and Anchoring Structures of Liquid Crystals Studied by Scanning Tunneling Microscopy. Jpn. J. Appl. Phys. 1991, 30, 2542–2546. [Google Scholar] [CrossRef]
- Vuks, M. Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals. Opt. Spectrosc. 1966, 20, 361–368. [Google Scholar]
- Haller, I. Thermodynamic and static properties of liquid crystals. Prog. Solid State Chem. 1975, 10, 103–118. [Google Scholar] [CrossRef]
- Maier, W.; Meier, G. A simple theory of the dielectric are some homogeneous criteria oriented liquid crystal phases of nematic type. Z Naturforsch. A 1961, 16, 262–267. [Google Scholar] [CrossRef]
- Saupe, A. Temperature-dependence and magnitudes of deformation constants in strained liquids. Z. Naturforsch. Teil A 1960, 15, 810–814. [Google Scholar] [CrossRef]
- Maier, W.; Saupe, A. Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil l1. Z. Nat. A 1959, 14, 882–889. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharath Kumar, M.; Awwal Adeshina, M.; Kang, D.; Jee, Y.; Kim, T.; Choi, M.; Park, J. Enhancement of Birefringence in Reduced Graphene Oxide Doped Liquid Crystal. Nanomaterials 2020, 10, 842. https://doi.org/10.3390/nano10050842
Bharath Kumar M, Awwal Adeshina M, Kang D, Jee Y, Kim T, Choi M, Park J. Enhancement of Birefringence in Reduced Graphene Oxide Doped Liquid Crystal. Nanomaterials. 2020; 10(5):842. https://doi.org/10.3390/nano10050842
Chicago/Turabian StyleBharath Kumar, Mareddi, Mohammad Awwal Adeshina, Daekyung Kang, Youngho Jee, Taewan Kim, Muhan Choi, and Jonghoo Park. 2020. "Enhancement of Birefringence in Reduced Graphene Oxide Doped Liquid Crystal" Nanomaterials 10, no. 5: 842. https://doi.org/10.3390/nano10050842
APA StyleBharath Kumar, M., Awwal Adeshina, M., Kang, D., Jee, Y., Kim, T., Choi, M., & Park, J. (2020). Enhancement of Birefringence in Reduced Graphene Oxide Doped Liquid Crystal. Nanomaterials, 10(5), 842. https://doi.org/10.3390/nano10050842