Study of Physico-Chemical Changes of CdTe QDs after Their Exposure to Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Deionised Water, pH, and Ion Analysis
2.3. Synthesis of Cadmium Telluride (CdTe) Quantum Dots (QDs)
2.4. Absorbance Measurements
2.5. Fluorescence Measurements
2.6. Electrochemical Determination of Cadmium Ions
2.7. Characterization of CdTe Quantum Dots by Field-Emission Scanning Electron Microscopy and High-Resolution Transmission Electron Microscopy
2.8. Zetasizer Analysis of Nanoparticles
2.9. Measurement of Physical Parameters
2.10. Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) for QDs Analysis
2.11. Ellman Assay
2.12. Stability of QDs
2.13. Data Treatment and Descriptive Statistics
3. Results
3.1. Characterization of CdTe Quantum Dots
3.2. Study of the Influence of Ultraviolet (UV) Radiation on Physico-Chemical Properties of QDs
3.3. Biophysical Characteristics of Prepared CdTe Quantum Dots
3.4. Biophysical Characteristics of QDs after their Exposure to UV Radiation
3.5. Summary of Biophysical Characteristics of QDs after Their Exposure to UV Radiation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CdSe CdTe | cadmium selenide cadmium telluride |
DLS DNTB DPPH DPV EDX FESEM GSH HRTEM LOD | dynamic light scattering 5,5′-dithiobis(2-nitrobenzoic acid) 2,2-diphenyl-1-picrylhydrazyl differential voltammetry energy-dispersive X-ray spectroscopy field emission scanning electron microscopy glutathione high resolution transmission electron microscopy limit of detection |
LOQ | limit of quantification |
MPA MSA NPs | 3-mercaptopropionic acid mercaptosuccinic acid nanoparticles |
P QDs | p-value quantum dots |
r | correlation coefficient |
ROI ROS RSD SD SDS-PAGE gel SEM | reactive oxidation intermediates reactive oxygen species relative standard deviation standard deviation sodium dodecyl sulfate-polyacrylamide gel scanning electron microscopy |
SH groups SS bonds TEM TGA UV radiation | sulfhydryl groups disulfide bonds transmission electron microscopy thioglycolic acid ultraviolet radiation |
References
- Cavan, E.L.; Belcher, A.; Atkinson, A.; Hill, S.L.; Kawaguchi, S.; McCormack, S.; Meyer, B.; Nicol, S.; Ratnarajah, L.; Schmidt, K.; et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 2019, 10, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saupe, E.E.; Myers, C.E.; Peterson, A.T.; Soberon, J.; Singarayer, J.; Valdes, P.; Qiao, H.J. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 2019, 3, 1419–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kline, D.I.; Teneva, L.; Okamoto, D.K.; Schneider, K.; Caldeira, K.; Miard, T.; Chai, A.; Marker, M.; Dunbar, R.B.; Mitchell, B.G.; et al. Living coral tissue slows skeletal dissolution related to ocean acidification. Nat. Ecol. Evol. 2019, 3, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Witze, A. The weather observers on climate change’s front lines. Nature 2019, 573, 317–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, H.S.; Millar, R.J.; Karoly, D.J.; Beyerle, U.; Guillod, B.P.; Mitchell, D.; Shiogama, H.; Sparrow, S.; Woollings, T.; Allen, M.R. Higher CO2 concentrations increase extreme event risk in a 1.5 degrees C world. Nat. Clim. Chang. 2018, 8, 604. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Gong, Y.; Han, R. Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings. PLoS ONE 2014, 9, e110400. [Google Scholar] [CrossRef]
- Hu, M.Z.; Zhu, T. Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications. Nanoscale Res. Lett. 2015, 10, 469. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15–25. [Google Scholar] [CrossRef]
- Yang, C.; Xie, H.; Li, Y.; Zhang, J.-K.; Su, B.-L. Direct and rapid quantum dots labelling of Escherichia coli cells. J. Colloid Interface Sci. 2013, 393, 438–444. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, B.; Ma, M.; Cai, Z. A Sensitive and Selective Fluorimetric Method of Quick Determination of Sialic Acids in Egg Products by Lectin-CdTe Quantum Dots as Nanoprobe. J. Food Sci. 2014, 79. [Google Scholar] [CrossRef]
- Huy, B.T.; Seo, M.-H.; Zhang, X.; Lee, Y.-I. Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots. Biosen. Bioelectron. 2014, 57, 310–316. [Google Scholar]
- Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285. [Google Scholar] [CrossRef]
- Agrawal, S.; Morarka, A.; Bodas, D.; Paknikar, K. Multiplexed detection of waterborne pathogens in circular microfluidics. Appl. Biochem. Biotechnol. 2012, 167, 1668–1677. [Google Scholar] [CrossRef] [PubMed]
- Breger, J.; Delehanty, J.B.; Medintz, I.L. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 131–151. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Zhou, G.; Xiang, X.; Ji, X.; Zheng, Z.; He, Z.; Wang, H. Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay. Anal. Chem. 2012, 84, 3200–3207. [Google Scholar] [CrossRef]
- Djikanović, D.; Kalauzi, A.; Jeremić, M.; Xu, J.; Mićić, M.; Whyte, J.D.; Leblanc, R.M.; Radotić, K. Interaction of the CdSe quantum dots with plant cell walls. Colloid Surf. B Biointerfaces 2012, 91, 41–47. [Google Scholar] [CrossRef]
- Lv, S.; Chen, F.; Chen, C.; Chen, X.; Gong, H.; Cai, C. A novel CdTe quantum dots probe amplified resonance light scattering signals to detect microRNA-122. Talanta 2017, 165, 659–663. [Google Scholar] [CrossRef]
- Peng, C.-W.; Liu, X.-L.; Chen, C.; Liu, X.; Yang, X.-Q.; Pang, D.-W.; Zhu, X.-B.; Li, Y. Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials 2011, 32, 2907–2917. [Google Scholar] [CrossRef]
- Alvand, Z.M.; Rajabi, H.R.; Mirzaei, A.; Masoumiasl, A.; Sadatfaraji, H. Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 98, 535–544. [Google Scholar] [CrossRef]
- Smith, A.M.; Nie, S. Chemical analysis and cellular imaging with quantum dots. Analyst 2004, 129, 672–677. [Google Scholar] [CrossRef]
- Vikesland, P.J. Nanosensors for water quality monitoring. Nat. Nanotechnol. 2018, 13, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Sturzenbaum, S.R.; Hockner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J.S.; Taniguchi, S.; Dailey, L.A.; Khanbeigi, R.A.; Rosca, E.V.; Thanou, M.; et al. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol. 2013, 8, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Azadmanesh, K.; Shokrgozar, M.A.; Journeay, W.S.; Laurent, S. Effect of nanoparticles on the cell life cycle. Chem. Rev. 2011, 111, 3407–3432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. (64)Cu-1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Quantum Dot-Vascular Endothelial Growth Factor; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2004. [Google Scholar]
- Bilan, R.; Nabiev, I.; Sukhanova, A. Quantum Dot-Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery. ChemBioChem 2016, 17, 2103–2114. [Google Scholar] [CrossRef] [PubMed]
- Foubert, A.; Beloglazova, N.V.; Rajkovic, A.; Sas, B.; Madder, A.; Goryacheva, I.Y.; De Saeger, S. Bioconjugation of quantum dots: Review & impact on future application. Trac-Trends Anal. Chem. 2016, 83, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Moulick, A.; Blazkova, I.; Milosavljevic, V.; Fohlerova, Z.; Hubalek, J.; Kopel, P.; Vaculovicova, M.; Adam, V.; Kizek, R. Application of CdTe/ZnSe Quantum Dots in In Vitro Imaging of Chicken Tissue and Embryo. Photochem. Photobiol. 2015, 91, 417–423. [Google Scholar] [CrossRef]
- Fisher, A.A.E.; Osborne, M.A.; Day, I.J.; Lucena Alcalde, G. Measurement of ligand coverage on cadmium selenide nanocrystals and its influence on dielectric dependent photoluminescence intermittency. Commun. Chem. 2019, 2, 63. [Google Scholar] [CrossRef]
- Esteve-Turrillas, F.A.; Abad-Fuentes, A. Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosen. Bioelectron. 2013, 41, 12–29. [Google Scholar] [CrossRef] [Green Version]
- Algar, W.R.; Tavares, A.J.; Krull, U.J. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta 2010, 673, 1–25. [Google Scholar] [CrossRef]
- Stanisavljevic, M.; Krizkova, S.; Vaculovicova, M.; Kizek, R.; Adam, V. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens. Bioelectron. 2015, 74, 562–574. [Google Scholar] [CrossRef]
- Tsipotan, A.S.; Gerasimova, M.A.; Aleksandrovsky, A.S.; Zharkov, S.M.; Slabko, V.V. Effect of visible and UV irradiation on the aggregation stability of CdTe quantum dots. J. Nanopart. Res. 2016, 18, 324. [Google Scholar] [CrossRef]
- Derfus, A.M.; Chan, W.C.; Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Lai, Y.; Zheng, X.; Wu, J.; Long, Z.; Liang, C. Synthesis of functionalized CdTe/CdS QDs for spectrofluorimetric detection of BSA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 68, 1356–1361. [Google Scholar] [CrossRef]
- Song, Y.; Cao, X.; Guo, Y.; Chen, P.; Zhao, Q.; Shen, G. Fabrication of mesoporous CdTe/ZnO@ SiO2 core/shell nanostructures with tunable dual emission and ultrasensitive fluorescence response to metal ions. Chem. Mater. 2008, 21, 68–77. [Google Scholar] [CrossRef]
- Sun, X.; Liu, B.; Xu, Y. Dual-emission quantum dots nanocomposites bearing an internal standard and visual detection for Hg 2+. Analyst 2012, 137, 1125–1129. [Google Scholar] [CrossRef]
- Wu, H.; Liu, G.; Wang, J.; Lin, Y. Quantum-dots based electrochemical immunoassay of interleukin-1α. Electrochem. Commun. 2007, 9, 1573–1577. [Google Scholar] [CrossRef]
- Zhao, D.; Chan, W.; He, Z.; Qiu, T. Quantum dot− ruthenium complex dyads: Recognition of double-strand DNA through dual-color fluorescence detection. Anal. Chem. 2009, 81, 3537–3543. [Google Scholar] [CrossRef]
- Kim, K.E.; Kim, T.G.; Sung, Y.M. Fluorescent cholesterol sensing using enzyme-modified CdSe/ZnS quantum dots. J. Nanopart. Res. 2012, 14. [Google Scholar] [CrossRef]
- Wang, G.-L.; Jiao, H.-J.; Zhu, X.-Y.; Dong, Y.-M.; Li, Z.-J. Enhanced fluorescence sensing of melamine based on thioglycolic acid-capped CdS quantum dots. Talanta 2012, 93, 398–403. [Google Scholar] [CrossRef]
- Wang, X.; Lv, Y.; Hou, X. A potential visual fluorescence probe for ultratrace arsenic (III) detection by using glutathione-capped CdTe quantum dots. Talanta 2011, 84, 382–386. [Google Scholar] [CrossRef]
- Nejdl, L.; Richtera, L.; Xhaxhiu, K.; Kensova, R.; Kudr, J.; Ruttkay-Nedecky, B.; Kynicky, J.; Wawrzak, D.; Adam, V.; Kizek, R.; et al. UV Tuning of Cadmium Telluride Quantum Dots (CdTe QDs)-Assessed by Spectroscopy and Electrochemistry. Int. J. Electrochem. Sci. 2016, 11, 175–188. [Google Scholar]
- Aldana, J.; Wang, Y.A.; Peng, X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 2001, 123, 8844–8850. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Z.; He, Y.; Lin, H.; Sheng, P.; Liu, C.; Luo, S.; Cai, Q. L-cysteine-capped CdTe QD-based sensor for simple and selective detection oftrinitrotoluene. Nanotechnology 2010, 21, 125502. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Huy, B.T.; Sakthivel, K.; Choi, H.J.; Joo, W.H.; Shin, S.K.; Lee, M.J.; Lee, Y.-I. Highly fluorescent CdTe quantum dots with reduced cytotoxicity-A Robust biomarker. Sens. Biosens. Res. 2015, 3, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Wuister, S.F.; Swart, I.; van Driel, F.; Hickey, S.G.; de Mello Donegá, C. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 2003, 3, 503–507. [Google Scholar] [CrossRef]
- Melichar, L.; Jarosova, M.; Kopel, P.; Adam, V.; Kizek, R. Synthesis of Quantum Dots by Microwave Irradiation; Tanger Ltd.: Slezská Ostrava, 2014; pp. 187–191. [Google Scholar]
- Shen, M.; Jia, W.P.; You, Y.J.; Hu, Y.; Li, F.; Tian, S.D.; Li, J.; Jin, Y.X.; Han, D.M. Luminescent properties of CdTe quantum dots synthesized using 3-mercaptopropionic acid reduction of tellurium dioxide directly. Nanoscale Res. Lett. 2013, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.J.A.; Reis, B.F. Photogeneration of silver nanoparticles induced by UV radiation and their use as a sensor for the determination of chloride in fuel ethanol using a flow-batch system. Talanta 2019, 201, 373–378. [Google Scholar] [CrossRef]
- Miao, Y.P.; Yang, P.; Zhao, J.; Du, Y.Y.; He, H.Y.; Liu, Y.S. Photodegradation of Mercaptopropionic Acid- and Thioglycollic Acid-Capped CdTe Quantum Dots in Buffer Solutions. J. Nanosci. Nanotechnol. 2015, 15, 4462–4469. [Google Scholar] [CrossRef]
- Sousa, J.C.L.; Vivas, M.G.; Ferrari, J.L.; Mendonca, C.R.; Schiavon, M.A. Determination of particle size distribution of water-soluble CdTe quantum dots by optical spectroscopy. RSC Adv. 2014, 4, 36024–36030. [Google Scholar] [CrossRef]
- Anbarasi, A.; Kalpana, R.; Arivarasan, A.; Jayavel, R.; Venkataraman, B. Detection of UV Rays Using CdTe Quantum Dots. Int. J. Meas. Technol. Instr. Eng. 2015, 5, 15–27. [Google Scholar] [CrossRef]
- Gao, F.; Lv, C.; Han, J.; Li, X.; Wang, Q.; Zhang, J.; Chen, C.; Li, Q.; Sun, X.; Zheng, J. CdTe–montmorillonite nanocomposites: Control synthesis, UV radiation-dependent photoluminescence, and enhanced latent fingerprint detection. J. Phys. Chem. C 2011, 115, 21574–21583. [Google Scholar] [CrossRef]
- Lan, G.-Y.; Lin, Y.-W.; Huang, Y.-F.; Chang, H.-T. Photo-assisted synthesis of highly fluorescent ZnSe (S) quantum dots in aqueous solution. J. Mater. Chem. 2007, 17, 2661–2666. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239. [Google Scholar] [CrossRef]
- Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 1987, 109, 5649–5655. [Google Scholar] [CrossRef]
- Gaponik, N.; Talapin, D.V.; Rogach, A.L.; Hoppe, K.; Shevchenko, E.V.; Kornowski, A.; Eychmüller, A.; Weller, H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177–7185. [Google Scholar] [CrossRef]
- Shavel, A.; Gaponik, N.; Eychmüller, A. Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe (S) nanocrystals. J. Phys. Chem. B 2004, 108, 5905–5908. [Google Scholar] [CrossRef]
- Talapin, D.V.; Gaponik, N.; Borchert, H.; Rogach, A.L.; Haase, M.; Weller, H. Etching of colloidal InP nanocrystals with fluorides: Photochemical nature of the process resulting in high photoluminescence efficiency. J. Phys. Chem. B 2002, 106, 12659–12663. [Google Scholar] [CrossRef]
- Ma, J.; Chen, J.-Y.; Guo, J.; Wang, C.; Yang, W.; Xu, L.; Wang, P. Photostability of thiol-capped CdTe quantum dots in living cells: The effect of photo-oxidation. Nanotechnology 2006, 17, 2083. [Google Scholar] [CrossRef]
- Ma, J.; Chen, J.-Y.; Zhang, Y.; Wang, P.-N.; Guo, J.; Yang, W.-L.; Wang, C.-C. Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells: Process and mechanism. J. Phys. Chem. B 2007, 111, 12012–12016. [Google Scholar] [CrossRef]
- Gaponenko, S.V. Optical Properties of Semiconductor Nanocrystals; Cambridge University Press: Cambridge, UK, 1998; Volume 23. [Google Scholar]
- Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe) ZnS core− shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. [Google Scholar] [CrossRef]
- Karpov, S.; Slabko, V.; Chiganova, G. Physical principles of the photostimulated aggregation of metal sols. Colloid J. 2002, 64, 425–442. [Google Scholar] [CrossRef]
- Rouhana, L.L.; Jaber, J.A.; Schlenoff, J.B. Aggregation-resistant water-soluble gold nanoparticles. Langmuir 2007, 23, 12799–12801. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Beattie, D.A.; Ralston, J.; Sedev, R. Colloid stability of thymine-functionalized gold nanoparticles. Langmuir 2007, 23, 12096–12103. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Sedev, R.; Beattie, D.; Ralston, J. Light-induced aggregation of colloidal gold nanoparticles capped by thymine derivatives. Langmuir 2008, 24, 4506–4511. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Ahmed, W.; Youssef, T. Photoluminescence and photostability investigations of biocompatible semiconductor nanocrystals coated with glutathione using low laser power. J. Nanopart. Res. 2014, 16, 2445. [Google Scholar] [CrossRef]
- Karpov, S.; Bas’ ko, A.; Popov, A.; Slabko, V. Optical spectra of silver colloids within the framework of fractal physics. Colloid J. 2000, 62, 699–713. [Google Scholar] [CrossRef]
Cd2+ + RSH → Cd(RS)+ + H+ |
TeO2 + 2OH− → TeO32− + H2O |
TeO32− + 4RSH → RS-Te-SR + RSSR + H2O + 2OH− |
RS-Te-SR + RSH → RS-TeH + RSSR |
RS-TeH + RSH → RSSR + HTe− + H+ |
Cd(RS)+ + HTe− + OH− + H+ → CdTe(RSH) + H2O |
Type of CdTe QDs | Absorbance Maximum (nm) a | SD | Excitation Maximum (nm) | Emission Maximum (nm) | Difference b | Color | Quantum Yield c (%) | Size of QDs (nm) d |
---|---|---|---|---|---|---|---|---|
CdTe QDs-MSA-A | 492 ± 2 | 3.6 | 455 ± 3 | 544 ± 2 | −89 | Green | 23.0 | 2 |
CdTe QDs-MSA-B | 524 ± 2 | 24.0 | 471 ± 2 | 550 ± 3 | −79 | Yellow | 16.0 | 2 |
CdTe QDs-MSA-C | 565 ± 2 | 35.8 | 535 ± 1 | 600 ± 3 | −65 | Orange | 18.0 | 3 |
CdTe QDs-MSA-D | 582 ± 2 | 15.9 | 588 ± 2 | 656 ± 2 | −68 | Red | 7.0 | 3 |
Day | Solar Radiation a | UV Index b | Vis Absorption Maximum c | Fluorescence Maximum d | DPV Signal e | Ellman Reaction f | Potential |
---|---|---|---|---|---|---|---|
(W/m2) | (nm) | (nm) | (µM) | (mAU) | (mV) | ||
Green | |||||||
1 | 238,456 | 1,894 | 488 ± 2 | 520 ± 2 | 1,377 ± 48 | 287 ± 14 | −607 |
2 | 275,719 | 2,428 | 481 ± 2 | 526 ± 2 | 1,282 ± 56 | 267 ± 11 | −607 |
3 | 344,679 | 2,970 | 500 ± 2 | 562 ± 2 | 967 ± 36 | 193 ± 14 | −600 |
4 | 329,919 | 2,753 | 484 ± 2 | 540 ± 2 | 1,343 ± 56 | 232 ± 14 | −601 |
5 | 233,861 | 2,039 | 490 ± 2 | 540 ± 2 | 891 ± 19 | 206 ± 13 | −601 |
6 | 324,228 | 2,738 | 523 ± 2 | 604 ± 2 | 219 ± 14 | 232 ± 11 | −593 |
7 | 326,704 | 2,905 | 530 ± 2 | 590 ± 2 | 493 ± 22 | 149 ± 8 | −600 |
Yellow | |||||||
1 | 238,456 | 1,894 | 513 ± 2 | 540 ± 2 | 1,140 ± 66 | 286 ± 11 | −602 |
2 | 275,719 | 2,428 | 521 ± 2 | 562 ± 2 | 1,428 ± 55 | 228 ± 13 | −606 |
3 | 344,679 | 2,970 | 592 ± 2 | 622 ± 2 | 414 ± 22 | 145 ± 11 | −606 |
4 | 329,919 | 2,753 | 572 ± 2 | 620 ± 2 | 561 ± 36 | 159 ± 14 | −603 |
5 | 233,861 | 2,039 | 540 ± 2 | 580 ± 2 | 1,131 ± 22 | 205 ± 16 | −603 |
6 | 324,228 | 2,738 | 550 ± 2 | 638 ± 2 | 371 ± 29 | 199 ± 13 | −599 |
7 | 326,704 | 2,905 | 560 ± 2 | 614 ± 2 | 423 ± 19 | 155 ± 10 | −595 |
Orange | |||||||
1 | 238,456 | 1,894 | 563 ± 2 | 596 ± 2 | 1,150 ± 26 | 285 ± 16 | −605 |
2 | 275,719 | 2,428 | 566 ± 2 | 598 ± 2 | 1,319 ± 23 | 251 ± 13 | −607 |
3 | 344,679 | 2,970 | 573 ± 2 | 600 ± 2 | 1,122 ± 21 | 269 ± 13 | −604 |
4 | 329,919 | 2,753 | 563 ± 2 | 594 ± 2 | 1,103 ± 28 | 286 ± 12 | −607 |
5 | 233,861 | 2,039 | 571 ± 2 | 594 ± 2 | 1,371 ± 22 | 300 ± 14 | −607 |
6 | 324,228 | 2,738 | 591 ± 2 | 636 ± 2 | 361 ± 8 | 146 ± 9 | −595 |
7 | 326,704 | 2,905 | 567 ± 2 | 590 ± 2 | 582 ± 9 | 309 ± 11 | −588 |
Red | |||||||
1 | 238,456 | 1,894 | 594 ± 2 | 654 ± 2 | 402 ± 5 | 78 ± 2 | −604 |
2 | 275,719 | 2,428 | 598 ± 2 | 648 ± 2 | 484 ± 5 | 70 ± 2 | −607 |
3 | 344,679 | 2,970 | 587 ± 2 | 656 ± 2 | 385 ± 7 | 72 ± 3 | −606 |
4 | 329,919 | 2,753 | 600 ± 2 | 650 ± 2 | 426 ± 8 | 73 ± 2 | −606 |
5 | 233,861 | 2,039 | 595 ± 2 | 654 ± 2 | 512 ± 6 | 69 ± 1 | −606 |
6 | 324,228 | 2,738 | 592 ± 2 | 656 ± 2 | 348 ± 6 | 88 ± 2 | −600 |
7 | 326,704 | 2,905 | 564 ± 2 | 662 ± 2 | 450 ± 5 | 73 ± 3 | −599 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosnedlova, B.; Vsetickova, M.; Stankova, M.; Uhlirova, D.; Ruttkay-Nedecky, B.; Ofomaja, A.; Fernandez, C.; Kepinska, M.; Baron, M.; Ngoc, B.D.; et al. Study of Physico-Chemical Changes of CdTe QDs after Their Exposure to Environmental Conditions. Nanomaterials 2020, 10, 865. https://doi.org/10.3390/nano10050865
Hosnedlova B, Vsetickova M, Stankova M, Uhlirova D, Ruttkay-Nedecky B, Ofomaja A, Fernandez C, Kepinska M, Baron M, Ngoc BD, et al. Study of Physico-Chemical Changes of CdTe QDs after Their Exposure to Environmental Conditions. Nanomaterials. 2020; 10(5):865. https://doi.org/10.3390/nano10050865
Chicago/Turabian StyleHosnedlova, Bozena, Michaela Vsetickova, Martina Stankova, Dagmar Uhlirova, Branislav Ruttkay-Nedecky, Augustine Ofomaja, Carlos Fernandez, Marta Kepinska, Mojmir Baron, Bach Duong Ngoc, and et al. 2020. "Study of Physico-Chemical Changes of CdTe QDs after Their Exposure to Environmental Conditions" Nanomaterials 10, no. 5: 865. https://doi.org/10.3390/nano10050865
APA StyleHosnedlova, B., Vsetickova, M., Stankova, M., Uhlirova, D., Ruttkay-Nedecky, B., Ofomaja, A., Fernandez, C., Kepinska, M., Baron, M., Ngoc, B. D., Nguyen, H. V., Thu, H. P. T., Sochor, J., & Kizek, R. (2020). Study of Physico-Chemical Changes of CdTe QDs after Their Exposure to Environmental Conditions. Nanomaterials, 10(5), 865. https://doi.org/10.3390/nano10050865