Photonic and Thermal Modelling of Microrings in Silicon, Diamond and GaN for Temperature Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Axis-Symmetric Model
2.2. 2D Model
2.3. 3D Model
3. Results and Discussion
3.1. Consistency Comparison of the Models
3.2. Temperature Sensitivity Comparison of Silicon, Diamond, Gallium Nitride
3.3. Self-Heating in Microrings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TPA | Two-Photon Absorption |
FEM | Finite Elements Method |
PML | Perfectly Matched Layer |
PMC | Perfect Magenetic Conductor |
ORR | Optical Ring Resonator |
FSR | Free Spectral Range |
SBC | Scattering-Boundary Condition |
BMA | Boundary Mode Analysis |
References
- Bolton, H. Evolution of the Thermometer, 1592–1743; The Chemical Publishing Co.: Easton, PA, USA, 1900. [Google Scholar]
- Price, R. The Platinum Resistance Thermometer. Platin. Met. Rev. 1959. [Google Scholar] [CrossRef]
- Brites, C.D.; Lima, P.P.; Silva, N.J.; Millán, A.; Amaral, V.S.; Palacio, F.; Carlos, L.D. Thermometry at the nanoscale. Nanoscale 2012, 4, 4799–4829. [Google Scholar] [CrossRef] [Green Version]
- Klimov, N.; Purdy, T.; Ahmed, Z. Towards replacing resistance thermometry with photonic thermometry. Sens. Actuators Phys. 2018, 269, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Klimov, N.N.; Purdy, T.; Herman, T.; Douglass, K.O.; Fitzgerald, R.P.; Kundagrami, R. Photonic thermometry: Upending 100 year-old paradigm in temperature metrology. In Silicon Photonics XIV; Reed, G.T., Knights, A.P., Eds.; SPIE: Bellingham, WA, USA, 2019; p. 19. [Google Scholar] [CrossRef]
- Bureau International des Poids et Mesures. Guide to Realization of the ITS-90-Platinum Resistance Thermometry; BIPM: Saint-Cloud, France, 2016. [Google Scholar]
- Kim, G.D.; Lee, H.S.; Park, C.H.; Lee, S.S.; Lim, B.T.; Bae, H.K.; Lee, W.G. Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process. Opt. Express 2010, 18, 22215. [Google Scholar] [CrossRef]
- Xu, H.; Hafezi, M.; Fan, J.; Taylor, J.M.; Strouse, G.F.; Ahmed, Z. Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt. Express 2014, 22, 3098. [Google Scholar] [CrossRef] [PubMed]
- Niehusmann, J.; Vörckel, A.; Bolivar, P.H.; Wahlbrink, T.; Henschel, W.; Kurz, H. Ultrahigh-quality-factor silicon-on-insulator microring resonator. Opt. Lett. 2004, 29, 2861. [Google Scholar] [CrossRef]
- Steglich, P.; Hülsemann, M.; Dietzel, B.; Mai, A. Optical Biosensors Based on Silicon-On-Insulator Ring Resonators: A Review. Molecules 2019, 24, 519. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Fan, X. Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 2010, 399, 205–211. [Google Scholar] [CrossRef]
- Yang, F.; Yang, N.; Huo, X.; Xu, S. Thermal sensing in fluid at the micro-nano-scales. Biomicrofluidics 2018, 12, 041501. [Google Scholar] [CrossRef]
- Geschke, O.; Klank, H.; Tellemann, P. Microsystem Engineering of Lab-On-a-Chip Devices; Wiley Online Library: Hoboken, NJ, USA, 2008; Volume 100. [Google Scholar]
- Klemme, B.J.; Adriaans, M.J.; Day, P.K.; Sergatskov, D.A.; Aselage, T.L.; Duncan, R.V. PdMn and PdFe: New Materials for Temperature Measurement Near 2 K. J. Low Temp. Phys. 1999, 116, 133–146. [Google Scholar] [CrossRef]
- OMSOL Multiphysics® v. 5.4. COMSOL AB, Stockholm, Sweden. Available online: www.comsol.com (accessed on 27 March 2020).
- Fang, Z.; Zhao, C.Z. Recent Progress in Silicon Photonics: A Review. ISRN Opt. 2012, 2012, 1–27. [Google Scholar] [CrossRef]
- Bogaerts, W.; Chrostowski, L. Silicon Photonics Circuit Design: Methods, Tools and Challenges. Laser Photonics Rev. 2018, 12, 1700237. [Google Scholar] [CrossRef]
- Manipatruni, S.; Dokania, R.K.; Schmidt, B.; Sherwood-Droz, N.; Poitras, C.B.; Apsel, A.B.; Lipson, M. Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Opt. Lett. 2008, 33, 2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadivand, A.; Sinha, R.; Vabbina, P.K.; Karabiyik, M.; Kaya, S.; Pala, N. Hot electron generation by aluminum oligomers in plasmonic ultraviolet photodetectors. Opt. Express 2016, 24, 13665. [Google Scholar] [CrossRef]
- Bayram, C.; Liu, R. Exploring the Next Phase in Gallium Nitride Photonics. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2017; pp. 411–435. [Google Scholar] [CrossRef]
- Martens, M.; Schlegel, J.; Vogt, P.; Brunner, F.; Lossy, R.; Würfl, J.; Weyers, M.; Kneissl, M. High gain ultraviolet photodetectors based on AlGaN/GaN heterostructures for optical switching. Appl. Phys. Lett. 2011, 98, 211114. [Google Scholar] [CrossRef]
- Aharonovich, I.; Greentree, A.D.; Prawer, S. Diamond photonics. Nat. Photon. 2011, 5, 397–405. [Google Scholar] [CrossRef]
- Bogaerts, W.; de Heyn, P.; van Vaerenbergh, T.; de Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photon. Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Acharyya, N.; Kozyreff, G. Multiple Critical Couplings and Sensing in a Microresonator-Waveguide System. Phys. Rev. Appl. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Li, H.H. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 1980, 9, 561–658. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205. [Google Scholar] [CrossRef]
- Ciddor, P.E. Refractive index of air: New equations for the visible and near infrared. Appl. Opt. 1996, 35, 1566. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, T.; Yabe, M. The temperature dependence of the refractive indices of fused silica and crystal quartz. J. Phys. Appl. Phys. 1983, 16, 97–100. [Google Scholar] [CrossRef]
- Nyquist, H. Certain Topics in Telegraph Transmission Theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Icenogle, H.W.; Platt, B.C.; Wolfe, W.L. Silicon (Si) Optical Grade Silicon—Si. Appl. Opt. 1980, 6, 94–95. [Google Scholar] [CrossRef]
- Hiremath, K.R.; Hammer, M.; Stoffer, R.; Prkna, L.; Čtyroký, J. Analytic approach to dielectric optical bent slab waveguides. Opt. Quantum Electron. 2005, 37, 37–61. [Google Scholar] [CrossRef]
- Klar, T.; Perner, M.; Grosse, S.; von Plessen, G.; Spirkl, W.; Feldmann, J. Surface-Plasmon Resonances in Single Metallic Nanoparticles. Phys. Rev. Lett. 1998, 80, 4249–4252. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z. Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator. Nanoscale 2019, 11, 8091–8095. [Google Scholar] [CrossRef]
- Fontanella, J.; Johnston, R.L.; Colwell, J.H.; Andeen, C. Temperature and pressure variation of the refractive index of diamond. Appl. Opt. 1977, 16, 2949. [Google Scholar] [CrossRef]
- Watanabe, N.; Kimoto, T.; Suda, J. The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515degC. J. Appl. Phys. 2008, 104, 106101. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, N.; Kimoto, T.; Suda, J. Thermo-Optic Coefficients of 4H-SiC, GaN, and AlN for Ultraviolet to Infrared Regions up to 500 degC. Jpn. J. Appl. Phys. 2012, 51, 112101. [Google Scholar] [CrossRef]
- Cocorullo, G.; Corte, F.G.D.; Rendina, I. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl. Phys. Lett. 1999, 74, 3338–3340. [Google Scholar] [CrossRef]
- Coe, S.; Sussmann, R. Optical, thermal and mechanical properties of CVD diamond. Diam. Relat. Mater. 2000, 9, 1726–1729. [Google Scholar] [CrossRef]
- Burek, M.J.; Cohen, J.D.; Meenehan, S.M.; El-Sawah, N.; Chia, C.; Ruelle, T.; Meesala, S.; Rochman, J.; Atikian, H.A.; Markham, M.; et al. Diamond optomechanical crystals. Optica 2016, 3, 1404. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.; Dumon, P.; Bogaerts, W.; Zhang, H.; Jian, X.; Zhao, M.; Morthier, G.; Baets, R. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. In Proceedings of the 2009 6th IEEE International Conference on Group IV Photonics, San Francisco, CA, USA, 9–11 September 2009; Volume 17, pp. 14627–14633. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Oxford University Press: Oxford, UK, 1959. [Google Scholar]
- Medková, D. The Laplace Equation; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport phenomena. AIChE J. 1961. [Google Scholar] [CrossRef]
- Holman, J.P. Heat Transfer, 8th ed.; Southern Methodist University: Dallas, TX, USA, 1997. [Google Scholar]
- Al-Arabi, M.; El-Riedy, M. Natural convection heat transfer from isothermal horizontal plates of different shapes. Int. J. Heat Mass Transf. 1976, 19, 1399–1404. [Google Scholar] [CrossRef]
- Shen, Y.R. Principles of Nonlinear Optics; Wiley-Interscience: Hoboken, NJ, USA, 2002. [Google Scholar]
- Stryland, E.W.V.; Woodall, M.A.; Vanherzeele, H.; Soileau, M.J. Energy band-gap dependence of two-photon absorption. Opt. Lett. 1985, 10, 490. [Google Scholar] [CrossRef] [Green Version]
- Bristow, A.D.; Rotenberg, N.; van Driel, H.M. Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl. Phys. Lett. 2007, 90, 191104. [Google Scholar] [CrossRef]
- Phillip, H.R.; Taft, E.A. Kramers-Kronig Analysis of Reflectance Data for Diamond. Phys. Rev. 1964, 136, A1445–A1448. [Google Scholar] [CrossRef]
- Muth, J.F.; Lee, J.H.; Shmagin, I.K.; Kolbas, R.M.; Casey, H.C.; Keller, B.P.; Mishra, U.K.; DenBaars, S.P. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 1997, 71, 2572–2574. [Google Scholar] [CrossRef]
- Wray, K.L.; Connolly, T.J. Thermal Conductivity of Clear Fused Silica at High Temperatures. J. Appl. Phys. 1959, 30, 1702–1705. [Google Scholar] [CrossRef]
- Slack, G.A. Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond. J. Appl. Phys. 1964, 35, 3460–3466. [Google Scholar] [CrossRef]
- Jeżowski, A.; Stachowiak, P.; Plackowski, T.; Suski, T.; Krukowski, S.; Boćkowski, M.; Grzegory, I.; Danilchenko, B.; Paszkiewicz, T. Thermal conductivity of GaN crystals grown by high pressure method. Phys. Status Solidi B 2003, 240, 447–450. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, G.; Li, B. Thermal contact resistance across nanoscale silicon dioxide and silicon interface. J. Appl. Phys. 2012, 112, 064319. [Google Scholar] [CrossRef]
- Cahill, D.G.; Goodson, K.; Majumdar, A. Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures. J. Heat Transf. 2001, 124, 223–241. [Google Scholar] [CrossRef]
- Shmegera, R.S.; Podoba, Y.O.; Kushch, V.I.; Belyaev, A.S. Effect of the contact conductivity of the diamond–metal binder interface on the thermal conductivity of diamond-containing composites. J. Superhard Mater. 2015, 37, 242–252. [Google Scholar] [CrossRef]
- Bell, A.S.; Steinlechner, J.; Martin, I.W.; Craig, K.; Cunningham, W.; Rowan, S.; Hough, J.; Schnabel, R.; Khalaidovski, A. Anomalous optical surface absorption in nominally pure silicon samples at 1550 nm. Class. Quantum Gravity 2017, 34, 205013. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.M.; Wickham, B.J.; Dhillon, H.K.; Chen, Y.; Webster, S.; Turri, G.; Bass, M. Development of high-purity optical grade single-crystal CVD diamond for intracavity cooling. In Solid State Lasers XXIII: Technology and Devices; Clarkson, W.A., Shori, R.K., Eds.; SPIE: Bellingham, WA, USA, 2014. [Google Scholar] [CrossRef] [Green Version]
- Ambacher, O.; Rieger, W.; Ansmann, P.; Moustakas, T.D.; Stutzmann, M. Stutzmann Sub-bandgap absorption of gallium nitride determined by Photothermal Deflection Spectroscopy. Solid State Commun. 1996, 97, 365–370. [Google Scholar] [CrossRef]
- Tao, Y.; Boss, J.M.; Moores, B.A.; Degen, C.L. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 2014, 5, 3638. [Google Scholar] [CrossRef]
NIST-ORR [8] | Si-ORR (AS) | Si-ORR (3D) | Si-ORR (2D) | |
---|---|---|---|---|
Experimental | Simulated | Simulated | Simulated | |
Input | ||||
n()@1550 nm | n/a | 3.4757 * | 3.4757 * | 3.4757 * |
dn/d@1550 nm [μm−1] | n/a | −0.08 * | −0.08 * | −0.08 * |
Thermo-optic Coef.@20 [1/K] | 2 × | 1.6 × | 1.6 × | 1.6 × |
Output | ||||
Azimuthal Mode Number m | 108 (calc.) | 108 (i) | 108 (c) | 108 (c) |
FSR (around 1550 nm) [nm] | 9.2 | 9.06 | 9.14 | 12 |
T-Sensitivity [pm/K] | 77 | 68.2 | 68.06 | 67–70 |
Silicon | Diamond | Gallium Nitride | |
---|---|---|---|
Refractive Index ( = 1550 nm) | 3.4757 | 2.4792 | 2.3169 |
Waveguide width [nm] | 610 | 850 | 800 |
Waveguide height [nm] | 220 | 300 | 350 |
Effective Refractive Index | 2.541 | 1.8562 | 1.7439 |
Ring Radius (m = 108@1550 nm) [nm] | 10,485 | 14,353.27 | 15,277.56 |
Optical Path Length () [μm] | 167.40 | 162.31 | 167.40 |
Thermo-optic Coef. @20 [1/K] | 1.6 × | 3 × | 5.2 × |
Thermal exp. Coef. @20 [1/K] | 2.6 × | 1 × | 3.17 × |
Temperature Sensitivity [pm/K] | 68.2 | 16.8 | 30.4 |
FSR (near 1550 nm) [nm] | 9.06 | 9.66 | 9.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weituschat, L.M.; Dickmann, W.; Guimbao, J.; Ramos, D.; Kroker, S.; Postigo, P.A. Photonic and Thermal Modelling of Microrings in Silicon, Diamond and GaN for Temperature Sensing. Nanomaterials 2020, 10, 934. https://doi.org/10.3390/nano10050934
Weituschat LM, Dickmann W, Guimbao J, Ramos D, Kroker S, Postigo PA. Photonic and Thermal Modelling of Microrings in Silicon, Diamond and GaN for Temperature Sensing. Nanomaterials. 2020; 10(5):934. https://doi.org/10.3390/nano10050934
Chicago/Turabian StyleWeituschat, Lukas Max, Walter Dickmann, Joaquín Guimbao, Daniel Ramos, Stefanie Kroker, and Pablo Aitor Postigo. 2020. "Photonic and Thermal Modelling of Microrings in Silicon, Diamond and GaN for Temperature Sensing" Nanomaterials 10, no. 5: 934. https://doi.org/10.3390/nano10050934
APA StyleWeituschat, L. M., Dickmann, W., Guimbao, J., Ramos, D., Kroker, S., & Postigo, P. A. (2020). Photonic and Thermal Modelling of Microrings in Silicon, Diamond and GaN for Temperature Sensing. Nanomaterials, 10(5), 934. https://doi.org/10.3390/nano10050934