Quadratic Meta-Reflectors Made of HfO2 Nanopillars with a Large Field of View at Infrared Wavelengths
Abstract
:1. Introduction
2. Design Principles and Methods
2.1. Quadratic Phase Profile
2.2. Schematic of Nanopillars
2.3. Methods
3. Results and Discussions
3.1. Geometrical Dependence of Reflection
3.2. Large FOV of Light Focusing
3.3. Large FOV of Light Deflecting
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Luo, X.; Pu, M.; Ma, X.; Li, X. Taming the Electromagnetic Boundaries via Metasurfaces: From Theory and Fabrication to Functional Devices. Int. J. Antennas Propag. 2015, 2015, 80. [Google Scholar] [CrossRef]
- Hou-Tong, C.; Antoinette, J.T.; Nanfang, Y. A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
- Hsiao, H.-H.; Chu, C.H.; Tsai, D.P. Fundamentals and Applications of Metasurfaces. Small Methods 2017, 1, 1600064. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Liang, C.; Chen, X.; Zhou, Z.; Tang, Y.; Ye, X.; Yi, Y.; Wang, J.; Wu, P. Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application. Micromachines 2019, 10, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cen, C.; Zhang, Y.; Liang, C.; Chen, X.; Yi, Z.; Duan, T.; Tang, Y.; Ye, X.; Yi, Y.; Xiao, S. Numerical investigation of a tunable metamaterial perfect absorber consisting of two-intersecting graphene nanoring arrays. Phys. Lett. A 2019, 383, 3030–3035. [Google Scholar] [CrossRef]
- Ye, X.; Shao, T.; Sun, L.; Wu, J.; Wang, F.; He, J.; Jiang, X.; Wu, W.-D.; Zheng, W. Plasma-Induced, Self-Masking, One-Step Approach to an Ultrabroadband Antireflective and Superhydrophilic Subwavelength Nanostructured Fused Silica Surface. Acs Appl. Mater. Interfaces 2018, 10, 13851–13859. [Google Scholar] [CrossRef]
- Wu, J.; Ye, X.; Sun, L.; Huang, J.; Wen, J.; Geng, F.; Zeng, Y.; Li, Q.; Yi, Z.; Jiang, X. Growth mechanism of one-step self-masking reactive-ion-etching (RIE) broadband antireflective and superhydrophilic structures induced by metal nanodots on fused silica. Opt. Express 2018, 26, 1361–1374. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, H.; Liu, B.; Song, J.; Jiang, Y.; Tang, C.; Li, J. Dielectric Huygens’ Metasurface for High-Efficiency Hologram Operating in Transmission Mode. Sci. Rep. 2016, 6, 30613. [Google Scholar] [CrossRef] [Green Version]
- Yifat, Y.; Eitan, M.; Iluz, Z.; Hanein, Y.; Boag, A.; Scheuer, J. Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays. Nano Lett. 2014, 14, 2485–2490. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Ray, V.; Wu, D.; Yi, Y. Metalens With Artificial Focus Pattern. IEEE Photonics Technol. Lett. 2020, 32, 251–254. [Google Scholar] [CrossRef]
- Miscuglio, M.; Borys, N.J.; Spirito, D.; Martín-García, B.; Zaccaria, R.P.; Weber-Bargioni, A.; Schuck, P.J.; Krahne, R. Planar aperiodic arrays as metasurfaces for optical near-field patterning. ACS Nano 2019, 13, 5646–5654. [Google Scholar] [CrossRef]
- Lin, X.; Yair, R.; Yardimci, N.T.; Muhammed, V.; Luo, Y.; Mona, J.; Aydogan, O. All-optical machine learning using diffractive deep neural networks. Science 2018, 361, 1004–1008. [Google Scholar] [CrossRef] [Green Version]
- West, P.R.; Stewart, J.L.; Kildishev, A.V.; Shalaev, V.M.; Shkunov, V.V.; Strohkendl, F.; Zakharenkov, Y.A.; Dodds, R.K.; Byren, R. All-dielectric subwavelength metasurface focusing lens. Opt. Express 2014, 22, 26212–26221. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, F.; Chen, J.; Shang, S.; Wu, J.; Chen, S.; Chen, Y.; Ye, X.; Yang, L. Design of high-efficiency all-dielectric polymer meta-surfaces beam deflection blazed grating. Results Phys. 2020, 17, 103094. [Google Scholar] [CrossRef]
- Shao, T.; Tang, F.; Sun, L.; Ye, X.; He, J.; Yang, L.; Zheng, W. Fabrication of Antireflective Nanostructures on a Transmission Grating Surface Using a One-Step Self-Masking Method. Nanomaterials 2019, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Shang, S.; Tang, F.; Ye, X.; Li, Q.; Li, H.; Wu, J.; Wu, Y.; Chen, G.; Zhang, Z.; Yang, Y.; et al. High-Efficiency Metasurfaces with 2π Phase Control Based on Aperiodic Dielectric Nanoarrays. Nanomaterials 2020, 10, 250. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Sun, X.; Zhou, S.; Pu, X.; Xu, N.; Xu, Y.; Liu, W. Ultra-compact structured light projector with all-dielectric metalenses for 3D sensing. Aip Adv. 2019, 9, 105016. [Google Scholar] [CrossRef]
- Gledhill, D.; Tian, G.Y.; Taylor, D.; Clarke, D. Panoramic imaging—A review. Comput. Graph. 2003, 27, 435–445. [Google Scholar] [CrossRef]
- Wu, D.; Wang, J.N.; Niu, L.G.; Zhang, X.L.; Wu, S.Z.; Chen, Q.D.; Lee, L.P.; Sun, H.B. Bioinspired Fabrication of High-Quality 3D Artificial Compound Eyes by Voxel-Modulation Femtosecond Laser Writing for Distortion-Free Wide-Field-of-View Imaging. Adv. Opt. Mater. 2014, 2, 751–758. [Google Scholar] [CrossRef]
- Sofroniew, N.J.; Flickinger, D.; King, J.; Svoboda, K. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 2016, 5, e14472. [Google Scholar] [CrossRef]
- Coskun, A.F.; Su, T.-W.; Ozcan, A. Wide field-of-view lens-free fluorescent imaging on a chip. Lab A Chip 2010, 10, 824–827. [Google Scholar] [CrossRef] [Green Version]
- Robertson, D.A.; Macfarlane, D.G.; Hunter, R.I.; Cassidy, S.L.; Llombart, N.; Gandini, E.; Bryllert, T.; Ferndahl, M.; Lindström, H.; Tenhunen, J. High Resolution, Wide Field of View, Real Time 340GHz 3D Imaging Radar for Security Screening. In Proceedings of the Passive and Active Millimeter-Wave Imaging XX, Anaheim, CA, USA, 13 April 2017. [Google Scholar]
- Bechtel, C.; Knobbe, J.; Grüger, H.; Lakner, H. Large field of view MEMS-based confocal laser scanning microscope for fluorescence imaging. Opt. Int. J. Light Electron Opt. 2014, 125, 876–882. [Google Scholar] [CrossRef]
- Ortega, P.; Garín, M.; von Gastrow, G.; Savisalo, T.; Tolvanen, A.; Vahlman, H.; Vähänissi, V.; Pasanen, T.P.; Carrió, D.; Savin, H. Black silicon back-contact module with wide light acceptance angle. Prog. Photovolt. Res. Appl. 2019, 28, 210–216. [Google Scholar] [CrossRef]
- Lin, J.-C.; Ho, W.-J.; Yeh, C.-W.; Liu, J.-J.; Syu, H.-J.; Lin, C.-F. Light Trapping of Plasmonics Textured Silicon Solar Cells Based on Broadband Light Scattering and Wide Acceptance Angle of Indium Nanoparticles. In Proceedings of the 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017; pp. 118–121. [Google Scholar]
- Rondineau, S.; Himdi, M.; Sorieux, J. A sliced spherical Luneburg lens. IEEE Antennas Wirel. Propag. Lett. 2003, 2, 163–166. [Google Scholar] [CrossRef]
- Lee, L.P.; Szema, R. Inspirations from biological optics for advanced photonic systems. Science 2005, 310, 1148–1150. [Google Scholar] [CrossRef]
- Hail, C.U.; Poulikakos, D.; Eghlidi, H. High-Efficiency, Extreme-Numerical-Aperture Metasurfaces Based on Partial Control of the Phase of Light. Adv. Opt. Mater. 2018, 6, 1800852. [Google Scholar] [CrossRef] [Green Version]
- Paniagua-Dominguez, R.; Yu, Y.F.; Khaidarov, E.; Choi, S.; Leong, V.; Bakker, R.M.; Liang, X.; Fu, Y.H.; Valuckas, V.; Krivitsky, L.A. A metalens with a near-unity numerical aperture. Nano Lett. 2018, 18, 2124–2132. [Google Scholar] [CrossRef] [Green Version]
- Pu, M.; Li, X.; Guo, Y.; Ma, X.; Luo, X. Nanoapertures with ordered rotations: Symmetry transformation and wide-angle flat lensing. Opt. Express 2017, 25, 31471–31477. [Google Scholar] [CrossRef]
- Qin, J.; Huang, F.; Li, X.; Deng, L.; Kang, T.; Markov, A.; Yue, F.; Chen, Y.; Wen, X.; Liu, S. Enhanced Second Harmonic Generation from Ferroelectric HfO2-Based Hybrid Metasurfaces. ACS Nano 2019, 13, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Divitt, S.; Fan, Q.; Zhu, W.; Agrawal, A.; Xu, T.; Lezec, H.J. All-Dielectric Deep Ultraviolet Metasurfaces. In Proceedings of the CLEO: QELS_Fundamental Science, San Jose, CA, USA, 14–19 May 2017. [Google Scholar]
- Wang, Y.; Wu, T.; Kanamori, Y.; Hane, K. Freestanding HfO 2 grating fabricated by fast atom beam etching. Nanoscale Res. Lett. 2011, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hemmatyar, O.; Abdollahramezani, S.; Kiarashinejad, Y.; Zandehshahvar, M.; Adibi, A. Structural Colors by Fano-resonances Supported in All-dielectric Metasurfaces Made of HfO2; Optical Society of America: Washington, DC, USA, 2019. [Google Scholar]
- Golding, P.; Jackson, S.D.; Tsai, P.-K.; Dickinson, B.; King, T. Efficient high power operation of a Tm-doped silica fiber laser pumped at 1.319 μm. Opt. Commun. 2000, 175, 179–183. [Google Scholar] [CrossRef]
- Hunsperger, R.G. Integrated Optics: Theory and Technology; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Khorasaninejad, M.; Capasso, F. Metalenses: Versatile multifunctional photonic components. Science 2017, 358, eaam8100. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.L.; Nassau, K.; Kometani, T.; Nash, D. Optical properties of cubic hafnia stabilized with yttria. Appl. Opt. 1990, 29, 604–607. [Google Scholar] [CrossRef]
- Müller, J.; Böscke, T.; Müller, S.; Yurchuk, E.; Polakowski, P.; Paul, J.; Martin, D.; Schenk, T.; Khullar, K.; Kersch, A. Ferroelectric Hafnium Oxide: A CMOS-Compatible and Highly Scalable Approach to Future Ferroelectric Memories. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013. [Google Scholar]
- Sandner, T.; Schmidt, J.U.; Schenk, H.; Lakner, H.; Yang, M.; Gatto, A.; Kaiser, N.; Braun, S.; Foltyn, T.; Leson, A. Highly Reflective Thin Film Coatings for High Power Applications of Micro Scanning Mirrors in the NIR-VIS-UV Spectral Region; SPIE: Bellingham, WA, USA, 2005; Volume 5963, p. 596314. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.; Ye, X.; Li, Q.; Li, H.; Yu, H.; Wu, W.; Li, B.; Zheng, W. Quadratic Meta-Reflectors Made of HfO2 Nanopillars with a Large Field of View at Infrared Wavelengths. Nanomaterials 2020, 10, 1148. https://doi.org/10.3390/nano10061148
Tang F, Ye X, Li Q, Li H, Yu H, Wu W, Li B, Zheng W. Quadratic Meta-Reflectors Made of HfO2 Nanopillars with a Large Field of View at Infrared Wavelengths. Nanomaterials. 2020; 10(6):1148. https://doi.org/10.3390/nano10061148
Chicago/Turabian StyleTang, Feng, Xin Ye, Qingzhi Li, Hailiang Li, Haichao Yu, Weidong Wu, Bo Li, and Wanguo Zheng. 2020. "Quadratic Meta-Reflectors Made of HfO2 Nanopillars with a Large Field of View at Infrared Wavelengths" Nanomaterials 10, no. 6: 1148. https://doi.org/10.3390/nano10061148
APA StyleTang, F., Ye, X., Li, Q., Li, H., Yu, H., Wu, W., Li, B., & Zheng, W. (2020). Quadratic Meta-Reflectors Made of HfO2 Nanopillars with a Large Field of View at Infrared Wavelengths. Nanomaterials, 10(6), 1148. https://doi.org/10.3390/nano10061148