Nutraceutical Vegetable Oil Nanoformulations for Prevention and Management of Diseases
Abstract
:1. Introduction
2. Searching through Bibliographic Databases (Carried out on 4 April 2020 at 1:01 PM)
2.1. Boolean/Proximity Operators and Wildcard Characters
- (1)
- “” quotation marks. They allow one to find the terms between the quotation marks in the exact order they are specified (exact sentence), avoiding sentences with reversed terms;
- (2)
- () round brackets. They allow one to find the composition of complex search expressions by defining the research priorities;
- (3)
- AND. It allows one to find records in which all the expressions are present simultaneously;
- (4)
- OR. It allows one to find the findings in which there is at least one of the typed terms;
- (5)
- * asterisk. It allows the database to return any word that begins with the root/stem of the term truncated by the asterisk.
2.2. General Database Settings
- (1)
- English language;
- (2)
- search by topic (title, abstract and keywords);
- (3)
- timespan from January 2000 to April 2020;
- (4)
- document type (articles, reviews, and books);
- (5)
- subject area (chemistry, biology, pharmacology, medicine, and health sciences).
2.3. Manuscripts Selection
3. Profiling of Main Vegetable Oil Bioactive Compounds with Nutraceutical Properties and Relative Affecting Factors
3.1. Major Component
3.1.1. Glycerolipids (mono-, di-, and Triacylglycerols)
3.2. Minor Components
3.2.1. Carotenoids
3.2.2. Fatty Acids (saturated, mono- and poly-unsaturated)
3.2.3. Lecithin
3.2.4. Lignans
3.2.5. Organosulfurs
3.2.6. Oryzanols
3.2.7. Phytosterols and Phytostanols
3.2.8. Policosanol
3.2.9. Tocopherols and Tocotrienols
4. Nanoformulations Involving Vegetable Oil-Based Nutraceuticals
4.1. Organic Nanoparticles
4.1.1. Nanoemulsions
Oil-in-Water Nanoemulsions
Self-Nanoemulsions
4.1.2. Nanoliposomes
4.1.3. Nanolipospheres
4.1.4. Nanostructured Lipid Carriers
4.1.5. Polymeric Nanoparticles
4.1.6. Solid Lipid Nanoparticles
4.2. Hybrid Nanoparticles
4.3. Inorganic Nanoparticles
4.3.1. Metallic Nanoparticles
4.3.2. Nanoclay Minerals
5. Conclusions
Funding
Conflicts of Interest
References
- Foundation for Innovation in Medicine (FIM)—The Nutraceutical Revolution: Fueling a Powerful, New International Market 1989. Available online: https://fimdefelice.org/library/the-nutraceutical-revolution-fueling-a-powerful-new-international-market/ (accessed on 2 April 2020).
- DeFelice, S.L. A comparison of the U.S., European, and Japanese nutraceutical health and medical claim rules. Regul. Aff. 1993, 5, 163–168. [Google Scholar]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar] [PubMed]
- Nounou, M.I.; Ko, Y.; Helal, N.A.; Boltz, J.F. Adulteration and counterfeiting of online nutraceutical formulations in the United States: Time for intervention? J. Diet. Suppl. 2018, 15, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Karuna, M.S.L.; Prasad, R.B.N. Vegetable oil-based nutraceuticals. In Plant Biology and Biotechnology; Bahadur, B., Rajam, M.V., Sahijram, L., Krishnamurthy, K., Eds.; Springer: New Delhi, India, 2015; pp. 793–812. [Google Scholar]
- Gonzalez-Sarrias, A.; Larrosa, M.; Garcia-Conesa, M.T.; Tomas-Barberan, F.A.; Espin, J.C. Nutraceuticals for older people: Facts, fictions and gaps in knowledge. Maturitas 2013, 75, 313–334. [Google Scholar] [CrossRef] [PubMed]
- Statista—Market Value of Nutraceuticals in the United States from 2014 to 2025. Available online: https://www.statista.com/statistics/910097/us-market-size-nutraceuticals/ (accessed on 31 March 2020).
- Ong, A.S.; Goh, S.H. Palm oil: A healthful and cost-effective dietary component. Food Nutr. Bull. 2002, 23, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Statista—Production of Major Vegetable Oils Worldwide from 2012/13 to 2019/2020, by Type. Available online: https://www.statista.com/statistics/263933/production-of-vegetable-oils-worldwide-since-2000/ (accessed on 31 March 2020).
- Gunstone, F.D. Oilseeds, vegetable oils, and seed meals—An overview by commodity. Lipid Technol. 2008, 20, 96. [Google Scholar] [CrossRef]
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Edible fats and oils. In Food Chemistry, 4th ed.; Springer: Berlin, Germany, 2009; p. 645. [Google Scholar]
- Yuvashree, M.; Gokulakannan, R.; Ganesh, R.N.; Viswanathan, P. Enhanced therapeutic potency of nanoemulsified garlic oil blend towards renal abnormalities in pre-diabetic rats. Appl. Biochem. Biotechnol. 2019, 188, 338–356. [Google Scholar] [CrossRef]
- Lacatusu, I.; Badea, N.; Niculae, G.; Bordei, N.; Stan, R.; Meghea, A. Lipid nanocarriers based on natural compounds: An evolving role in plant extract delivery. Eur. J. Lipid Sci. Technol. 2014, 116, 1708–1717. [Google Scholar] [CrossRef]
- Zaki, N. Progress and problems in nutraceuticals delivery: An expert review. J. Bioequiv. Availab. 2014, 6, 75–77. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Jiang, X.; Wang, H.; Zhao, Z.; Wang, W. Drug metabolism and pharmacokinetics of organosulfur compounds from garlic. J. Drug Metab. Toxicol. 2013, 4, 159. [Google Scholar]
- Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol. 2019, 21, 224–233. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Balasubramanian, N.; Quinn, M.T. Neutrophil immunomodulatory activity of natural organosulfur compounds. Molecules 2019, 24, 1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrikopoulos, N.K. Triglyceride species compositions of common edible vegetable oils and methods used for their identification and quantification. Food Rev. Int. 2002, 18, 71–102. [Google Scholar] [CrossRef]
- Gordon Betts, J.; Young, K.A.; Wise, J.A.; Johnson, E.; Poe, B.; Kruse, D.H.; Korol, O.; Johnson, J.E.; Womble, M.; DeSaix, P. Metabolism and nutrition. In Anatomy and Physiology; Rice University OpenStax: Houston, TX, USA, 2017; pp. 1149–1187. [Google Scholar]
- Wang, T.; Wang, X. Effects of lipid structure changed by interesterification on melting property and lipemia. Lipids 2016, 51, 1115–1126. [Google Scholar] [CrossRef]
- Karupaiah, T.; Sundram, K. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications. Nutr. Metab. 2007, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Lísa, M.; Holcapek, M. Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2008, 1198–1199, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Prasanth Kumar, P.K.; Gopala Krishna, A.G. Physico-chemical characteristics and nutraceutical distribution of crude palm oil and its fractions. Grasas Aceites 2014, 65, 18–35. [Google Scholar]
- Hartel, R.d.W.; von Elbe, J.H.; Hofberger, R. Fats, oils and emulsifiers. In Confectionery Science and Technology; Springer: Cham, Switzerland, 2018; p. 99. [Google Scholar]
- Bhalla, R.; Singh, A.K.; Pradhan, S.; Unnikumar, K.R. Lipids structure function and biotechnology aspects. In Textbook of Molecular Biotechnology; Chauhan, A.K., Varma, A., Eds.; I.K. International Publishing House: New Delhi, India, 2009; p. 191. [Google Scholar]
- Institute of medicine (U.S.) Panel on Dietary Antioxidants and Related Compounds. Chapter 8—β-carotene and other carotenoids. In Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Nagarajan, J.; Ramanan, R.N.; Raghunandan, M.E.; Galanakis, C.M.; Krishnamurthy, N.P. Carotenoids. In Nutraceutical and Functional Food Components, 1st ed.; Galanakis, C.M., Ed.; Elsevier: London, UK, 2017; pp. 259–296. [Google Scholar]
- Russo, M.; Moccia, S.; Bilotto, S.; Spagnuolo, C.; Durante, M.; Lenucci, M.S.; Mita, G.; Volpe, M.G.; Aquino, R.P.; Russo, G.L. A carotenoid extract from a Southern Italian cultivar of pumpkin triggers nonprotective autophagy in malignant cells. Oxid. Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef]
- Sundram, K.; Sambanthamurthi, R.; Tan, Y.A. Palm fruit chemistry and nutrition. Asia Pac. J. Clin. Nutr. 2003, 12, 355–362. [Google Scholar]
- Moreno, F.S.; Rossiello, M.R.; Manjeshwar, S.; Nath, R.; Rao, P.M.; Rajalakshmi, S.; Sarma, D.S. Effect of beta-carotene on the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat liver. Cancer Lett. 1995, 96, 201–208. [Google Scholar] [CrossRef]
- Dauqan, E.; Sani, H.A.; Abdullah, A.; Muhammad, H.; Top, A.G.M. Vitamin E and betacarotene composition in four different vegetable oils. Am. J. Appl. Sci. 2011, 8, 407–412. [Google Scholar]
- Ziegler, V.; Ferreira, C.D.; Cardozo, M.M.C.; Oliveira, M.; Elias, M.C. Pigmented rice oil: Changes in oxidative stability and bioactive compounds during storage of whole grains. J. Food Process. Preserv. 2017, 41, e13295. [Google Scholar] [CrossRef]
- Franke, S.; Fröhlich, K.; Werner, S.; Böhm, V.; Schöne, F. Analysis of carotenoids and vitamin E in selected oilseeds, press cakes and oils. Eur. J. Lipid Sci. Technol. 2010, 112, 1122–1129. [Google Scholar] [CrossRef]
- Procida, G.; Stancher, B.; Cateni, F.; Zacchigna, M. Chemical composition and functional characterisation of commercial pumpkin seed oil. J. Sci. Food Agric. 2013, 93, 1035–1041. [Google Scholar] [CrossRef]
- Palozza, P.; Mele, M.C.; Cittadini, A.; Mastrantoni, M. Potential interactions of carotenoids with other bioactive food components in the prevention of chronic diseases. Curr. Bioact. Compd. 2011, 7, 243–261. [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- van Rooijen, M.A.; Mensink, R.P. Palmitic acid versus stearic acid: Effects of interesterification and intakes on cardiometabolic risk markers—A systematic review. Nutrients 2020, 12, 615. [Google Scholar] [CrossRef] [Green Version]
- FAO/WHO. Fats and fatty acids in human nutrition. In Report of an Expert Consultation; FAO/WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Mobraten, K.; Haug, T.M.; Kleiveland, C.R.; Lea, T. Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signaling events, but with different kinetics and intensity in Caco-2 cells. Lipids Health Dis. 2013, 12, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Mišurcová, L.; Ambrožová, J.V.; Samek, D. Seaweed lipids as nutraceuticals. Adv. Food Nutr. Res. 2011, 64, 339–355. [Google Scholar]
- Flachs, P.; Horakova, O.; Brauner, P.; Rossmeisl, M.; Pecina, P.; Franssen-van Hal, N.; Ruzickova, J.; Sponarova, J.; Drahota, Z.; Vlcek, C.; et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat. Diabetologia 2005, 48, 2365–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, L.A.; Barrett-Connor, E.; von Mühlen, D. Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: The rancho bernardo study. Am. J. Clin. Nutr. 2005, 81, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Manson, J.A.E.; Willett, W.C. Types of dietary fat and risk of coronary heart disease: A critical review. J. Am. Coll. Nutr. 2001, 20, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Rukmini, C.; Raghuram, T.C. Nutritional and biochemical aspects of the hypolipidemic action of rice bran oil: A review. J. Am. Coll. Nutr. 1991, 10, 593–601. [Google Scholar] [CrossRef]
- van Nieuwenhuyzen, W.; Tomás, M.C. Update on vegetable lecithin and phospholipid technologies. Eur. J. Lipid Sci. Technol. 2008, 110, 472–486. [Google Scholar] [CrossRef]
- Tao, B.Y. Chapter 24—Industrial applications for plant oils and lipids. In Bioprocessing for Value-Added Products from Renewable Resources: New Technologies and Applications; Yang, S.-T., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 611–627. [Google Scholar]
- van Hoogevest, P.; Wendel, A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol. 2014, 116, 1088–1107. [Google Scholar] [CrossRef] [Green Version]
- U.S. Pharmacopoeia. Available online: http://www.pharmacopeia.cn/v29240/usp29nf24s0_m44420.html (accessed on 20 April 2020).
- Kinsley, M. Phosphatidylserine: A new ergogenic aid? Agro Food Ind. Hi Tech 2006, 17, 17–19. [Google Scholar]
- Lewis, N.G.; Davin, L.B. Lignans: Biosynthesis and function. In Comprehensive Natural Products Chemistry; Barton, D., Nakanishi, K., Meth-Cohn, O., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 639–712. [Google Scholar]
- Lampe, J.W. Isoflavonoid and lignan phytoestrogens as dietary biomarkers. J. Nutr. 2003, 133, 956S–964S. [Google Scholar] [CrossRef]
- Frank, J.; Eliasson, C.; Leroy-Nivard, D.; Budek, A.; Lundh, T.; Vessby, B.; Aman, P.; Kamal-Eldin, A. Dietary secoisolariciresinol diglucoside and its oligomers with 3-hydroxy-3-methyl glutaric acid decrease vitamin E levels in rats. Br. J. Nutr. 2004, 92, 169–176. [Google Scholar] [CrossRef]
- Kezimana, P.; Dmitriev, A.A.; Kudryavtseva, A.V.; Romanova, E.V.; Melnikova, N.V. Secoisolariciresinol diglucoside of flaxseed and its metabolites: Biosynthesis and potential for nutraceuticals. Front. Genet. 2018, 9, 641. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.-K.; Liu, R.-J.; Jin, Q.-Z.; Wang, X.-G. The contents of lignans in sesame seeds and commercial sesame oils of China. J. Am. Oil Chem. Soc. 2017, 94, 1035–1044. [Google Scholar] [CrossRef]
- Jeng, K.C.; Hou, R.C.; Wang, J.C.; Ping, L.I. Sesamin inhibits lipopolysaccharide-induced cytokine production by suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Immunol. Lett. 2005, 97, 101–106. [Google Scholar] [CrossRef]
- Keowkase, R.; Shoomarom, N.; Bunargin, W.; Sitthithaworn, W.; Weerapreeyakul, N. Sesamin and sesamolin reduce amyloid-β toxicity in a transgenic Caenorhabditis elegans. Biomed. Pharmacother. 2018, 107, 656–664. [Google Scholar] [CrossRef]
- Cheng, F.C.; Jinn, T.R.; Hou, R.C.; Tzen, J.T. Neuroprotective effects of sesamin and sesamolin on gerbil brain in cerebral ischaemia. Int. J. Biomed. Sci. 2006, 2, 284–288. [Google Scholar]
- López-Biedma, A.; Sánchez-Quesada, C.; Delgado-Rodríguez, M.; Gaforio, J.J. The biological activities of natural lignans from olives and virgin olive oils: A review. J. Funct. Foods 2016, 26, 36–47. [Google Scholar] [CrossRef]
- Menendez, J.A.; Vazquez-Martin, A.; Garcia-Villalba, R.; Carrasco-Pancorbo, A.; Oliveras-Ferraros, C.; Fernandez-Gutierrez, A.; Segura-Carretero, A. tabAnti-HER2 (erbB-2) oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO). BMC Cancer 2008, 8, 377. [Google Scholar] [CrossRef] [Green Version]
- Lucchi, E.; Matera, R. Essential oils as active ingredients in functional foods and nutraceutical formulations. In Essential Oils as Natural Food Additives: Composition, Applications, Antioxidant and Antimicrobial Properties; Valgimigli, L., Ed.; Nova Science Publishers: New York, NY, USA, 2012; pp. 427–447. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Peng, C.; Zhao, S.Q.; Zhang, J.; Huang, G.Y.; Chen, L.Y.; Zhao, F.Y. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem. 2014, 165, 560–568. [Google Scholar] [CrossRef]
- Charu, K.; Yogita, S.; Sonali, S. Neutraceutical potential of organosulfur compounds in fresh garlic and garlic preparations. Int. J. Pharma Bio Sci. 2014, 5, B112–B126. [Google Scholar]
- Ried, K.; Fakler, P. Potential of garlic (Allium sativum) in lowering high blood pressure: Mechanisms of action and clinical relevance. Integr. Blood Press. Control 2014, 7, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-T.; Yao, C.-H.; Way, C.-L.; Lee, K.-W.; Tsai, C.-Y.; Ou, H.-C.; Kuo, W.-W. Diallyl trisulfide and diallyl disulfide ameliorate cardiac dysfunction by suppressing apoptotic and enhancing survival pathways in experimental diabetic rats. J. Appl. Physiol. 2013, 114, 402–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Nehus, Z.T.; Badger, T.M.; Fang, N. Quantification of vitamin E and gamma-oryzanol components in rice germ and bran. J. Agric. Food Chem. 2007, 55, 7308–7313. [Google Scholar] [CrossRef] [PubMed]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef]
- Azadmard-Damirchi, S. Minor compounds of olive oil: Phytosterols and tocopherols. In Olive Oil and Health; Corrigan, J.D., Ed.; Nova Science Publishers: New York, NY, USA, 2010; pp. 141–168. [Google Scholar]
- Jones, P.J.; Raeini-Sarjaz, M.; Ntanios, F.Y.; Vanstone, C.A.; Feng, J.Y.; Parsons, W.E. Modulation of plasma lipid levels and cholesterol kinetics by phytosterol versus phytostanol esters. J. Lipid Res. 2000, 41, 697–705. [Google Scholar] [PubMed]
- Huang, Z.R.; Lin, Y.K.; Fang, J.Y. Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, J. Determination of aliphatic alcohols, squalene, alpha-tocopherol and sterols in olive oils: Direct method involving gas chromatography of the unsaponifiable fraction following silylation. Analyst 2001, 126, 472–475. [Google Scholar] [CrossRef]
- Lou-Bonafonte, J.M.; Martínez-Beamonte, R.; Sanclemente, T.; Surra, J.C.; Herrera-Marcos, L.V.; Sanchez-Marco, J.; Arnal, C.; Osada, J. Current insights into the biological action of squalene. Mol. Nutr. Food Res. 2018, 8, e1800136. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Xue, L.; Zhang, L.; Wang, X.; Qi, X.; Jiang, J.; Yu, L.; Wang, X.; Zhang, W.; Zhang, Q.; et al. Phytosterol contents of edible oils and their contributions to estimated phytosterol intake in the Chinese diet. Foods 2019, 8, 334. [Google Scholar] [CrossRef] [Green Version]
- Ostlund, R.E.; Mcgill, J.B.; Zeng, C.M.; Covey, D.F.; Stearns, J.; Stenson, W.F.; Spillburg, C.A. Gastro-intestinal absorption and plasma kinetics of soy Delta(5)-phytosterols and phytostanols in humans. Am. J. Physiol. Endocrinol. Metab. 2002, 282, 911–916. [Google Scholar] [CrossRef]
- Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegard, L.; Jessup, W.; Jones, P.J.; Lütjohann, D.; Maerz, W.; Masana, L.; et al. European atherosclerosis society consensus panel on phytosterols. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014, 232, 346–360. [Google Scholar] [CrossRef]
- Brufau, G.; Canela, M.A.; Rafcas, M. Phytosterols: Physiologic and metabolic aspects related to cholesterol-lowering properties. Nutr. Res. 2008, 28, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Marinangeli, C.P.; Kassis, A.N.; Jain, D.; Ebine, N.; Cunnane, S.C.; Jones, P.J. Comparison of composition and absorption of sugarcane policosanols. Br. J. Nutr. 2007, 97, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.T.; Wesley, R.; Shamburek, R.D.; Pucino, F.; Csako, G. Meta-analysis of natural therapies for hyperlipidaemia: Plant sterols and stanols versus policosanol. Pharmacotherapy 2005, 25, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.; Brancaleoni, M.; Laghi, L.; Donati, F.; Mino, M. Antihyperlipidaemic effect of a Monascus purpureus brand dietary supplement on a large sample of subjects at low risk for cardiovascular disease: A pilot study. Complement. Ther. Med. 2005, 13, 273–278. [Google Scholar] [CrossRef]
- Harrabi, S.; Boukhchina, S.; Mayer, P.M.; Kallel, H. Policosanol distribution and accumulation in developing corn kernels. Food Chem. 2009, 115, 918–923. [Google Scholar] [CrossRef]
- Shahidi, F.; de Camargo, A.C. Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef]
- Sen, C.K.; Khanna, S.; Roy, S. Tocotrienols: Vitamin E beyond tocopherols. Life Sci. 2006, 78, 2088–2098. [Google Scholar] [CrossRef] [Green Version]
- Kornsteiner, M.; Wagner, K.H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- De Camargo, A.C.; Vieira, T.M.F.S.; Regitano-d’Arce, M.A.B.; de Alencar, S.M.; Calori-Domingues, M.A.; Canniatti-Brazaca, S.G. Gamma radiation induced oxidation and tocopherols decrease in in-shell, peeled and blanched peanuts. Int. J. Mol. Sci. 2012, 13, 2827–2845. [Google Scholar] [CrossRef]
- Karmowski, J.; Hintze, V.; Kschonsek, J.; Killenberg, M.; Böhm, V. Antioxidant activities of tocopherols/tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence. Food Chem. 2015, 175, 593–600. [Google Scholar] [CrossRef]
- Velasco, L.; Perez-Vich, B.; Fernandez-Martinez, J.M. Novel variation for the tocopherol profile in a sunflower created by mutagenesis and recombination. Plant Breed. 2004, 123, 490–492. [Google Scholar] [CrossRef]
- Schwartz, H.; Ollilainen, V.; Piironen, V.; Lampi, A.-M. Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J. Food Compos. Anal. 2008, 21, 152–161. [Google Scholar] [CrossRef]
- Grilo, E.C.; Costa, P.N.; Gurgel, C.S.S.; Beserra, A.F.L.; Almeida, F.N.S.; Dimenstein, R. Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Sci. Technol. (Campinas) 2014, 34, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Akoh, C.C. Antioxidant activities of annatto and palm tocotrienol-rich fractions in fish oil and structured lipid-based infant formula emulsion. Food Chem. 2015, 168, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.H.; Choo, Y.M.; Ma, A.N.; Chuah, C.H.; Hashim, M.A. Separation of vitamin E (tocopherol, tocotrienol, and tocomonoenol) in palm oil. Lipids 2004, 39, 1031–1035. [Google Scholar] [CrossRef]
- Chun, J.; Lee, J.; Ye, L.; Exler, J.; Eitenmiller, R.R. Tocopherol and tocotrienol contents of raw and processed fruits and vegetables in the United States diet. J. Food Compos. Anal. 2006, 19, 196–204. [Google Scholar] [CrossRef]
- Hornstra, G. Dietary lipids and cardiovascular disease: Effects of palm oil. Oleagineux 1988, 43, 75–81. [Google Scholar]
- Rand, M.L.; Hennissen, A.A.; Hornstra, G. Effect of dietary palm oil on arterial thrombosis, platelet response and platelet membrane fluidity in rats. Lipids 1988, 23, 1019–1023. [Google Scholar] [CrossRef]
- Shin, E.-C.; Huang, Y.-Z.; Pegg, R.B.; Phillips, R.D.; Eitenmiller, R.R. Commercial runner peanut cultivars in the United States: Tocopherol composition. J. Agric. Food Chem. 2009, 57, 10289–10295. [Google Scholar] [CrossRef]
- European Commission. Commission recommendation of 18 October 2011 on the definition of nanomaterial (Text with EEA relevance, 2011/696/EU). Off. J. Eur. Union 2011, L275, 38–40. [Google Scholar]
- Kaur, K.; Kaur, J.; Kumar, R.; Mehta, S.K. Formulation and physiochemical study of α-tocopherol based oil in water nanoemulsion stabilized with non toxic, biodegradable surfactant: Sodium stearoyl lactate. Ultrason. Sonochem. 2017, 38, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Dora, C.L.; Silva, L.F.; Putaux, J.L.; Nishiyama, Y.; Pignot-Paintrand, I.; Borsali, R.; Lemos-Senna, E. Poly(ethylene glycol) hydroxystearate-based nanosized emulsions: Effect of surfactant concentration on their formation and ability to solubilize quercetin. J. Biomed. Nanotechnol. 2012, 8, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.F.; Ricci-Júnior, E.; Mansur, C.R. Nanoemulsions containing octyl methoxycinnamate and solid particles of TiO2: Preparation, characterization and in vitro evaluation of the solar protection factor. Drug Dev. Ind. Pharm. 2013, 39, 1378–1388. [Google Scholar] [CrossRef] [PubMed]
- Gumus, Z.P.; Guler, E.; Demir, B.; Barlas, F.B.; Yavuz, M.; Colpankan, D.; Senisik, A.M.; Teksoz, S.; Unak, P.; Coskunol, H.; et al. Herbal infusions of black seed and wheat germ oil: Their chemical profiles, in vitro bio-investigations and effective formulations as phyto-nanoemulsions. Colloids Surf. B Biointerfaces 2015, 133, 73–80. [Google Scholar] [CrossRef]
- Brownlow, B.; Nagaraj, V.J.; Nayel, A.; Joshi, M.; Elbayoumi, T. Development and in vitro evaluation of vitamin E-enriched nanoemulsion vehicles loaded with genistein for chemoprevention against UVB-induced skin damage. J. Pharm. Sci. 2015, 104, 3510–3523. [Google Scholar] [CrossRef]
- Baccarin, T.; Mitjans, M.; Ramos, D.; Lemos-Senna, E.; Vinardell, M.P. Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line. J. Photochem. Photobiol. B 2015, 153, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Ragavan, G.; Muralidaran, Y.; Sridharan, B.; Nachiappa Ganesh, R.; Viswanathan, P. Evaluation of garlic oil in nano-emulsified form: Optimization and its efficacy in high-fat diet induced dyslipidemia in Wistar rats. Food Chem. Toxicol. 2017, 105, 203–213. [Google Scholar] [CrossRef]
- Maragheh, A.D.; Tabrizi, M.H.; Karimi, E.; Seyedi, S.M.R.; Khatamian, N. Producing the sour cherry pit oil nanoemulsion and evaluation of its anti-cancer effects on both breast cancer murine model and MCF-7 cell line. J. Microencapsul. 2019, 36, 399–409. [Google Scholar] [CrossRef]
- Shemesh, R.; Krepker, M.; Natan, M.; Danin-Poleg, Y.; Banin, E.; Kashi, Y.; Nitzan, N.; Vaxman, A.; Segal, E. Novel LDPE/halloysite nanotube films with sustained carvacrol release for broad-spectrum antimicrobial activity. RSC Adv. 2015, 5, 87108–87117. [Google Scholar] [CrossRef]
- Moghimi, R.; Ghaderi, L.; Rafati, H.; Aliahmadi, A.; McClements, D.J. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016, 194, 410–415. [Google Scholar] [CrossRef]
- Moghimi, R.; Aliahmadi, A.; McClements, D.J.; Rafati, H. Nanoemulsification of salvia officinalis essential oil; The impact on the antibacterial activity in liquid and vapour phase. J. Bionanosci. 2017, 11, 80–86. [Google Scholar] [CrossRef]
- Borges, R.S.; Lima, E.S.; Keita, H.; Ferreira, I.M.; Fernandes, C.P.; Cruz, R.A.S.; Duarte, J.L.; Velázquez-Moyado, J.; Ortiz, B.L.S.; Castro, A.N.; et al. Anti-inflammatory and antialgic actions of a nanoemulsion of Rosmarinus officinalis L. essential oil and a molecular docking study of its major chemical constituents. Inflammopharmacology 2018, 26, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Al-Otaibi, W.A.; Alkhatib, M.H.; Wali, A.N. Cytotoxicity and apoptosis enhancement in breast and cervical cancer cells upon coadministration of mitomycin C and essential oils in nanoemulsion formulations. Biomed. Pharmacother. 2018, 106, 946–955. [Google Scholar] [CrossRef]
- Shoorvarzi, S.N.; Shahraki, F.; Shafaei, N.; Karimi, E.; Oskoueian, E. Citrus aurantium L. bloom essential oil nanoemulsion: Synthesis, characterization, cytotoxicity, and its potential health impacts on mice. J. Food Biochem. 2020, 44, e13181. [Google Scholar] [CrossRef] [PubMed]
- Akkuş Arslan, Ş.; Tirnaksiz, F. Self-emulsifying drug delivery systems. Fabad J. Pharm. Sci. 2013, 38, 55–64. [Google Scholar]
- Mahdi, E.S.; Noor, A.M.; Sakeena, M.H.; Abdullah, G.Z.; Abdulkarim, M.F.; Sattar, M.A. Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging. Int. J. Nanomed. 2011, 6, 2499–2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, J.; Chang, Q.; Chan, C.K.; Meng, Z.Y.; Wang, G.N.; Sun, J.B.; Wang, Y.T.; Tong, H.H.; Zheng, Y. Formulation development and bioavailability evaluation of a self-nanoemulsified drug delivery system of oleanolic acid. AAPS PharmSciTech 2009, 10, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.H.; Shanmugam, S.; Thapa, P.; Lee, E.S.; Balakrishnan, P.; Baskaran, R.; Yoon, S.K.; Choi, H.G.; Yong, C.S.; Yoo, B.K.; et al. Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein. Arch. Pharm. Res. 2010, 33, 417–426. [Google Scholar] [CrossRef]
- Motawea, A.; Borg, T.; Tarshoby, M.; El-Gawad, A.E.A. Nanoemulsifying drug delivery system to improve the bioavailability of piroxicam. Pharm. Dev. Technol. 2017, 22, 445–456. [Google Scholar] [CrossRef]
- Eid, A.M.; El-Enshasy, H.A.; Aziz, R.; Elmarzugi, N.A. The preparation and evaluation of self-nanoemulsifying systems containing Swietenia oil and an examination of its anti-inflammatory effects. Int. J. Nanomed. 2014, 9, 4685–4695. [Google Scholar]
- Charcosset, C.; Juban, A.; Valour, J.P.; Urbaniak, S.; Fessi, H. Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chem. Eng. Res. Des. 2015, 94, 508–515. [Google Scholar] [CrossRef]
- Sebaaly, C.; Greige-Gerges, H.; Agusti, G.; Fessi, H.; Charcosset, C. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant. J. Liposome Res. 2016, 26, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Salari, S.; Salari, R. Nanoliposomal system of rosemary essential oil made by specific human cell phospholipids and evaluation of its anti-cancer properties. Appl. Nanosci. 2019, 9, 2085–2089. [Google Scholar] [CrossRef]
- Mangenheim, B.; Levy, M.Y.; Benita, S. An in vitro technique for evaluation of drug release profile from colloidal carriers—Ultrafiltration technique at low pressure. Int. J. Pharm. 1993, 94, 115–120. [Google Scholar] [CrossRef]
- Rawat, M.; Saraf, S. Liposphere: Emerging carriers in delivery of proteins and peptides. Int. J. Pharm. Sci. Nanotechnol. 2008, 1, 207–214. [Google Scholar]
- Barbosa, C.M.S.; Morais, H.A.; Deivivo, F.M.; Mansur, H.S.; Oliveira, M.C.D.; Silvestre, M.P.C. Papain hydrolysates of casein: Molecular weight profile and encapsulation in lipospheres. J. Sci. Food Agric. 2004, 84, 1891–1900. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Zhou, X.; Liu, H.; Sun, H.; Ma, Z.; Wu, B. Enhancement of oral bioavailability of tripterine through lipid nanospheres: Preparation, characterization, and absorption evaluation. J. Pharm. Sci. 2014, 103, 1711–1719. [Google Scholar] [CrossRef]
- Mitsutake, H.; Ribeiro, L.N.M.; da Silva, G.H.R.; Castro, S.R.; de Paula, E.; Poppi, R.J.; Breitkreitz, M.C. Evaluation of miscibility and polymorphism of synthetic and natural lipids for nanostructured lipid carrier (NLC) formulations by Raman mapping and multivariate curve resolution (MCR). Eur. J. Pharm. Sci. 2019, 135, 51–59. [Google Scholar] [CrossRef]
- Fang, J.Y.; Fang, C.L.; Liu, C.H.; Su, Y.H. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm. 2008, 70, 633–640. [Google Scholar] [CrossRef]
- Niculae, G.; Lacatusu, I.; Badea, N.; Stan, R.; Vasile, B.S.; Meghea, A. Rice bran and raspberry seed oil-based nanocarriers with self-antioxidative properties as safe photoprotective formulations. Photochem. Photobiol. Sci. 2014, 13, 703–716. [Google Scholar] [CrossRef]
- Zhao, X.L.; Yang, C.R.; Yang, K.L.; Li, K.X.; Hu, H.Y.; Chen, D.W. Preparation and characterization of nanostructured lipid carriers loaded traditional Chinese medicine, zedoary turmeric oil. Drug Dev. Ind. Pharm. 2010, 36, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.J.; Lin, L.J.; Wu, C.P.; Chen, C.J.; Chao, Y.P. Development of nanoscale oil bodies for targeted treatment of lung cancer. J. Agric. Food Chem. 2018, 66, 9438–9445. [Google Scholar] [CrossRef]
- Lertsutthiwong, P.; Rojsitthisak, P. Chitosan-alginate nanocapsules for encapsulation of turmeric oil. Pharmazie 2011, 66, 911–915. [Google Scholar] [PubMed]
- Elgegren, M.; Kim, S.; Cordova, D.; Silva, C.; Noro, J.; Cavaco-Paulo, A.; Nakamatsu, J. Ultrasound-assisted encapsulation of sacha inchi (Plukenetia volubilis Linneo.) oil in alginate-chitosan nanoparticles. Polymers 2019, 11, 1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, K.S.; Wang, C.Y.; Yang, C.H.; Grumezescu, A.M.; Lin, Y.S.; Kung, C.P.; Lin, I.Y.; Chang, Y.C.; Weng, W.J.; Wang, W.T. Synthesis and characterization of oil-chitosan composite spheres. Molecules 2013, 18, 5749–5760. [Google Scholar] [CrossRef] [Green Version]
- Ghaderi, S.; Ghanbarzadeh, S.; Mohammadhassani, Z.; Hamishehkar, H. Formulation of gammaoryzanol-loaded nanoparticles for potential application in fortifying food products. Adv. Pharm. Bull. 2014, 4, 549–554. [Google Scholar]
- Liakos, I.L.; D’autilia, F.; Garzoni, A.; Bonferoni, C.; Scarpellini, A.; Brunetti, V.; Carzino, R.; Bianchini, P.; Pompa, P.P.; Athanassiou, A. All natural cellulose acetate-Lemongrass essential oil antimicrobial nanocapsules. Int. J. Pharm. 2016, 510, 508–515. [Google Scholar] [CrossRef]
- Marchiori, M.C.L.; Rigon, C.; Copetti, P.M.; Sagrillo, M.R.; Cruz, L. Nanoencapsulation improves scavenging capacity and decreases cytotoxicity of silibinin and pomegranate oil association. AAPS PharmSciTech 2017, 18, 3236–3246. [Google Scholar] [CrossRef]
- Marchiori, M.C.L.; Rigon, C.; Camponogara, C.; Oliveira, S.M.; Cruz, L. Hydrogel containing silibinin-loaded pomegranate oil based nanocapsules exhibits anti-inflammatory effects on skin damage UVB radiation-induced in mice. J. Photochem. Photobiol. B 2017, 170, 25–32. [Google Scholar] [CrossRef]
- Mattiazzi, J.; Sari, M.H.M.; Lautenchleger, R.; dal Prá, M.; Braganhol, E.; Cruz, L. Incorporation of 3,3’-diindolylmethane into nanocapsules improves its photostability, radical scavenging capacity, and cytotoxicity against glioma cells. AAPS PharmSciTech 2019, 20, 49. [Google Scholar] [CrossRef]
- Al-Shalabi, E.; Alkhaldi, M.; Sunoqrot, S. Development and evaluation of polymeric nanocapsules for cirsiliol isolated from Jordanian Teucrium polium L. as a potential anticancer nanomedicine. J. Drug Deliv. Sci. Technol. 2020, 53, 101544. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Da Silva, A.S.; Oliveira, C.B.; Santos, R.C.; Vaucher, R.A.; Raffin, R.P.; Gomes, P.; Dambros, M.G.; Miletti, L.C.; Boligon, A.A.; et al. Trypanocidal action of tea tree oil (Melaleuca alternifolia) against Trypanosoma evansi in vitro and in vivo used mice as experimental model. Exp. Parasitol. 2014, 141, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Khullar, N.; Kakkar, V.; Kaur, I.P. Hepatoprotective effects of sesamol loaded solid lipid nanoparticles in carbon tetrachloride induced sub-chronic hepatotoxicity in rats. Environ. Toxicol. 2016, 31, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf. B Biointerfaces 2018, 171, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Zhao, Y.; Firempong, C.K.; Xu, X. Preparation, characterization and pharmacokinetic studies of linalool-loaded nanostructured lipid carriers. Pharm. Biol. 2016, 54, 2320–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodenak-Kladniew, B.; Islan, G.A.; de Bravo, M.G.; Durán, N.; Castro, G.R. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf. B Biointerfaces 2017, 154, 123–132. [Google Scholar] [CrossRef]
- Samyn, P.; Schoukens, G.; Stanssens, D.; Vonck, L.; van den Abbeele, H. Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles. J. Nanopart. Res. 2012, 14, 1075. [Google Scholar] [CrossRef]
- Date, T.; Nimbalkar, V.; Kamat, J.; Mittal, A.; Mahato, R.I.; Chitkara, D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J. Control. Release 2018, 271, 60–73. [Google Scholar] [CrossRef]
- Ghitman, J.; Stan, R.; Vlasceanu, G.; Vasile, E.; Iovu, H. Predicting the drug loading efficiency into hybrid nanocarriers based on PLGA-vegetable oil using molecular dynamic simulation approach and Flory-Huggins theory. J. Drug Deliv. Sci. Technol. 2019, 53, 101203. [Google Scholar] [CrossRef]
- Guler, E.; Barlas, F.B.; Yavuz, M.; Demir, B.; Gumus, Z.P.; Baspinar, Y.; Coskunol, H.; Timur, S. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations. Colloids Surf. B Biointerfaces 2014, 121, 299–306. [Google Scholar] [CrossRef]
- Scandorieiro, S.; de Camargo, L.C.; Lancheros, C.A.; Yamada-Ogatta, S.F.; Nakamura, C.V.; de Oliveira, A.G.; Andrade, C.G.; Duran, N.; Nakazato, G.; Kobayashi, R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016, 7, 760. [Google Scholar] [CrossRef]
- Antal, D.S.; Ardelean, F.; Chis Aimee, R.; Ollivier, E.; Serban, M.C. Nanoscale delivery systems: Actual and potential applications in the natural products industry. Curr. Pharm. Des. 2017, 23, 2414–2421. [Google Scholar]
- de Godoi, S.N.; Quatrin, P.M.; Sagrillo, M.R.; Nascimento, K.; Wagner, R.; Klein, B.; Santos, R.C.V.; Ourique, A.F. Evaluation of stability and in vitro security of nanoemulsions containing Eucalyptus globulus oil. Biomed. Res. Int. 2017, 2017, 2723418. [Google Scholar] [CrossRef] [Green Version]
Bioactive(s) | Issue(s) Solved 2 | Nanocarrier 3 | Ref. 4 |
---|---|---|---|
α-tocopherol | Water solubility (hydrophobicity) | Phosphatidylcholine/soybean lecithin (Lipoid® S100)-based liposome | [117] |
α-tocopherol, benzylisothiocyanate | Release, stability (photodegradation) of curcumin | α-tocopherol/benzylisothiocyanate/polyoxyethylene sorbitan monooleate (Tween® 80)/sodium stearoyl lactate-based oil-in-water nanoemulsion | [97] |
Apricot (P. armeniaca L.) and primula (P. veris L.) oils | Bioactivity, release, stability (photodegradation) of 3,3′-diindolylmethane | Apricot or primula oil/ethylcellulose or ammonium methacrylate copolymer (Eudragit® RS100)/polyoxyethylene sorbitan monooleate (Tween® 80)/sorbitan monooleate (Span® 80)-based nanocapsules loading 3,3′-diindolylmethane | [136] |
Avocado (P. americana) oil | Bioavailability, stability | Ethoxylated lauryl ether (Ultrol® L70)/keto-stearyl alcohol (Ultrol® CE200)-based oil-in-water nanoemulsion loading octyl methoxycinnamate and solid particles of titanium dioxide | [99] |
Bitter orange (C. aurantium) bloom EO | Bioactivity | Oil-in-water nanoemulsion | [110] |
Black cumin (N. sativa) oil, calendula (C. officinalis) extract, gold NPs and lipoic acid | Bioactivity, side effects of bioactives | Black cumin oil/calendula extract/lecithin/ polyoxyethylene sorbitan trioleate (Tween® 85)-based nanoemulsions enriched with lipoic acid capped gold NPs | [146] |
Black cumin (N. sativa) oil | Bioavailability, release, water solubility (hydrophobicity) of 5-fluorouracil, α-tocopherol, curcumin, hydrocortisone, indomethacin, izohidrafural, nitrofurantoin, and resveratrol | Black cumin oil/poly(lactic-co-glycolic acid) hybrid NPs loading drug | [145] |
Calendula (C. officinalis) infused black seed oil | Bioactivity | Lecithin/polyoxyethylene sorbitan monooleate (Tween® 80)-based oil-in-water nanoemulsion | [100] |
Camphor from rosemary (R. officinalis) EO | Bioactivity | Polyoxyethylene sorbitan monolaurate (Tween® 20)-based oil-in-water nanoemulsion | [108] |
Carotenoid-rich extract of pumpkin (C. moschata) pulp and seeds | Bioactivity | Butylated hydroxytoluene/polyoxyethylene sorbitan monooleate (Tween® 80)/tetrahydrofuran-based oil-in-water nanoemulsion | [29] |
Carotenoid-rich extract of Mexican marigold (T. patula) | Bioactivity, bioavailability, water solubility (hydrophobicity) | Blend of Amaranthus spp. (amaranth) seeds oil and/or hempseed (C. sativa) oil/cetyl palmitate/glycerol/ L-α-phosphatidylcholine/monostearate/polyoxyethylene sorbitan monolaurate (Tween® 20)/poloxamer 188 (Synperonic® PE/F68)-based NLC | [14] |
Carvacrol from oregano (O. vulgare) and thyme (T. vulgaris) EOs | Bioactivity, stability (thermolability) | Low-density polyethylene/halloysite nanotube films loading carvacrol | [105] |
Castor (R. communis) oil | Bioactivity, bioavailability, release of cirsiliol isolated from Jordanian germander (T. polium) | Castor oil/poly(ethylene glycol)-b-poly(ε-caprolactone)/polyoxyethylene sorbitan monooleate (Tween® 80)/sorbitan monooleate (Span® 80)-based nanocapsule loading cirsiliol | [137] |
Chamber bitter (P. urinaria) ethanolic extract | Bioactivity, bioavailability, water solubility (hydrophobicity) | Polyoxyethylene sorbitan monooleate (Tween® 80)/sorbitan monooleate (Span® 80)-based self-emulsion | [112] |
Ethyl oleate, coconut (C. nucifera), maize (Z. mays), olive (O. europaea), and soybean (G. max) oils | Absorption, bioactivity, water solubility (hydrophobicity) of piroxicam | Ethyl oleate, coconut, maize, olive, and soybean oils/poly(ethylene) glycol 400 or polyoxyethylene sorbitan monooleate (Tween® 80)/diethylene glycol monoethyl ether (Transcutol® HP)-based self-emulsion | [115] |
Eugenol of/or clove (S. aromaticum) EO | Bioavailability, stability (photodegradation), water solubility (hydrophobicity) | Soybean lecithin (Lipoid® S100)/soy phosphatidylcholine (Phospholipon® 90H)-based liposome | [118] |
γ-oryzanol | Stability, water solubility (hydrophobicity) | Ehylcellulose/γ-oryzanol/polyvinyl alcohol-based NPs | [132] |
Garlic (A. sativum) oil blend comprising 30–50% diallyl disulfide, 10–13% diallyl trisulfide, and 5–13% allyl sulphide | Bioactivity | Polyoxyethylene sorbitan monooleate (Tween® 80)-based oil-in-water nanoemulsion | [13,103] |
Ginger (A. zingiber) EO | Bioactivity, water solubility (hydrophobicity) of mitomycin C | Ginger EO/polyoxyethylene sorbitan monooleate (Tween® 80)/sorbitan monolaurate (Span® 20)-based oil-in-water nanoemulsion | [109] |
High-oleic sunflower (H. annuus), hydrogenated and unhydrogenated castor (R. communis), maize (Z. mays), rapeseed (B. napus) oils | Bioavailability, protection, stability | Imidized (with ammonium hydroxide in aqueous environment) poly(styrene-maleic anhydride)/oil hybrid NPs | [143] |
Lecithin, sodium oleate, soybean (G. max) oil | Bioavailability, permeation, stability, water solubility (hydrophobicity) of tripterin | Lecithin/sodium oleate/soybean oil-based liposphere | [123] |
Lemongrass (C. citratus) oil | Bioavailability, stability | Cellulose acetate/lemongrass oil-based nanocapsules | [133] |
Linalool | Bioavailability, stability (high volatilization), water solubility (hydrophobicity) | Decanoyl/octanoyl-glycerides, glycerin monostearate, polyoxyethylene sorbitan monooleate (Tween® 80), sorbitan monooleate (Span® 80)-based NLCs loading linalool | [141] |
Bioactivity, bioavailability, release, stability (high volatilization), water solubility (hydrophobicity) | Cetyl esters (Crodamol® SS), cetyl palmitate (Crodamol® CP), myristyl myristate (Crodamol® MM)-based NLCs loading linalool | [142] | |
Lutein | Bioavailability, water solubility (hydrophobicity) | Caprylcaproyl macrogol-8 glyceride (Labrasol®)/diethylene glycol monoethyl ether (Transcutol® HP)/phosphatidylcholine (Phosal® 53 MCT)/poly(ethylene) glycol 660 (Lutrol® E400)-based self-emulsion | [114] |
Oleanolic acid | Bioavailability, water solubility (hydrophobicity) | Caprylcaproyl macrogol-8 glyceride (Labrasol®)/diethylene glycol monoethyl ether (Transcutol® P)/macrogolglycerol ricinoleate (Cremophor® EL)/propylene glycol caprylate (Sefsol® 218)-based self-emulsion | [113] |
Oleosin | Bioavailability, targeting, water solubility (hydrophobicity) of camptothecin | Olive (O. europaea), peanut (A. hypogaea), sesame (S. indicum), and soybean (G. max) oils/phospholipids/protein obtained in E. coli by fusing the anti-epidermal growth factor receptor affibody (ZEGFR2) with oleosin-based nanoscale oil body | [128] |
Olive (O. europaea), sacha inchi (P. volubilis), soybean (G. max) oils | Biocompatibility, biodegradability, blood circulation time, mucoadhesiveness, toxicity, water solubility (hydrophobicity) of polymeric nanocarriers/lipophilic drugs | Alginate/chitosan/polyoxyethylene sorbitan monooleate (Tween® 80)/olive, sacha inchi, soybean oils/poloxamer 407 (Pluronic® F127)-based NP | [130] |
Oregano (O. vulgare) EO, silver NPs | Strong organoleptic characteristics of oregano OE and resistance towards silver NPs | Silver NP produced by the saprophytic parasite fungus Fusarium oxysporum and oregano EO | [147] |
Pacific Coast mahogany (S. humilis) oil | Bioactivity | Caprylcaproyl macrogol-8 glyceride (Labrasol®)/glycerol monooleate (Capmul®)/oleoyl macrogol-6 glycerides (Labrafil® M1944CS)/polyoxyethylene sorbitan monolaurate (Tween® 20)-based self-emulsion | [116] |
Polyphenol-rich ethyl acetate fraction of pomegranate (P. granatum) seed oil | Bioactivity | Ethyl acetate/soy lecithin-based oil-in-water nanoemulsion | [102] |
Pomegranate (P. granatum) oil and silibinine | Bioavailability, stability, water solubility (hydrophobicity) | Ethylcellulose, polyoxyethylene sorbitan monooleate (Tween® 80), pomegranate oil, sorbitan monooleate (Span® 80)-based nanocapsules loading silibinine | [134,135] |
Quercetin | Stability, water solubility (hydrophobicity) | Acetone/castor oil/ethanol/phosphatidylcholine/poly(ethylene) glycol 660-12-hydroxystearate-based oil-in-water nanoemulsion | [98] |
Raspberry (R. ideaus) and rice bran (O. sativa) seed oils | Bioactivity, bioavailability, stability, water solubility (hydrophobicity) of butyl-methoxydibenzoylmethane and octocrylene | Ceteareth 12 and 20, cetearyl alcohol, cetyl palmitate, glyceryl stearate (Emulgade® SE/PF)/L-α-phosphatidylcholine/n-hexadecyl palmitate/polyoxyethylene sorbitan monolaurate (Tween® 20)/poloxamer 188 (Synperonic® PE/F68)/raspberry and rice bran seed oils-based NLC | [126] |
Rosemary (R. officinalis) EO | Bioactivity, bioavailability, stability, water solubility (hydrophobicity) | Chloroform/cholesteryl hemisuccinate/L-α-phosphatidylethanolamine dioleoyl-based liposome | [119] |
Sage (S. officinalis) EO | Bioactivity, bioavailability | Polyoxyethylene sorbitan monooleate (Tween® 80)/sorbitan monooleate (Span® 80)-based oil-in-water nanoemulsion | [107] |
Sesamol from sesame (S. indicum) seed oil | Bioactivity, release, solubility (oxidation and photodegradation), water solubility (hydrophobicity) | Polyoxyethylene sorbitan monooleate (Tween® 80)/soy lecithin-based solid lipid NP loading sesamol | [139] |
Squalene | Bioavailability, permeation, water solubility (hydrophobicity) of psoralen derivatives (5-methoxypsoralen, 8-methoxypsoralen, 4,5,8-trimethylpsoralen) | Glyceryl palmitostearate (Precirol®)/hydrogenated soybean phosphatidylcholine/monoglycerides (Myverol® 18-04 K)/polyoxyethylene sorbitan monooleate (Tween® 80)/poloxamer 188 (Pluronic® F68)/squalene-based NLC | [125] |
Sunflower (H. annuus) seed oil | Encapsulation of both hydrophilic (i.e., iron oxide nanoparticles) and lipophilic (i.e., rhodamine B or epirubicin) materials | Acetic acid/chitosan/iron(II) chloride tetrahydrate/iron (III) chloride hexahydrate/ polyoxyethylene sorbitan monooleate (Tween® 80)/sodium hydroxide/sunflower seed oil-based NP encapsulating epirubicin and/or iron oxide | [131] |
Tea tree (M. alternifolia) oil | Bioactivity, bioavailability | Cetyl palmitate/polyoxyethylene sorbitan monooleate (Tween® 80)/tea tree oil-based nanocapsules | [138] |
Thymus (T. daenensis) EO | Bioactivity, bioavailability | Lecithin/polyoxyethylene sorbitan monooleate (Tween® 80)-based oil-in-water nanoemulsion | [106] |
Tocotrieniol-rich fraction of red PO (C. renda) oil | Bioactivity | D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS)/ethanol/glycerol/polyoxyl-15-hydroxystearate (Solutol® HS-15)-based oil-in-water nanoemulsion | [101] |
Turmeric (C. longa) oil | Bioavailability, stability, volatilization, water solubility (hydrophobicity) | Alginate/chitosan/polyoxyethylene sorbitan monooleate (Tween® 80)-based NP | [129] |
Zedoary turmeric (C. zedoaria) oil | Bioavailability, water solubility (hydrophobicity) of zedoary turmeric oil/lipophilic drugs | Caprylic/capric triglycerides (Miglyol® 812N)/cetyl esters (Crodamol® SS)/soybean phosphatidylcholine-based NLC | [127] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergallo, C. Nutraceutical Vegetable Oil Nanoformulations for Prevention and Management of Diseases. Nanomaterials 2020, 10, 1232. https://doi.org/10.3390/nano10061232
Vergallo C. Nutraceutical Vegetable Oil Nanoformulations for Prevention and Management of Diseases. Nanomaterials. 2020; 10(6):1232. https://doi.org/10.3390/nano10061232
Chicago/Turabian StyleVergallo, Cristian. 2020. "Nutraceutical Vegetable Oil Nanoformulations for Prevention and Management of Diseases" Nanomaterials 10, no. 6: 1232. https://doi.org/10.3390/nano10061232
APA StyleVergallo, C. (2020). Nutraceutical Vegetable Oil Nanoformulations for Prevention and Management of Diseases. Nanomaterials, 10(6), 1232. https://doi.org/10.3390/nano10061232