Stress Buildup Upon Crystallization of GeTe Thin Films: Curvature Measurements and Modelling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raoux, S. Phase Change Materials. Annu. Rev. Mater. Res. 2009, 39, 25–48. [Google Scholar] [CrossRef]
- Noé, P.; Vallée, C.; Hippert, F.; Fillot, F.; Raty, J.-Y. Phase-change materials for non-volatile memory devices: From technological challenges to materials science issues. Semicond. Sci. Technol. 2017, 33, 013002. [Google Scholar] [CrossRef]
- Zhang, W.; Mazzarello, R.; Wuttig, M.; Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 2019, 4, 150–168. [Google Scholar] [CrossRef]
- Lotnyk, A.; Behrens, M.; Rauschenbach, B. Phase change thin films for non-volatile memory applications. Nanoscale Adv. 2019, 1, 3836–3857. [Google Scholar] [CrossRef] [Green Version]
- Le Gallo, M.; Sebastian, A. An overview of phase-change memory device physics. J. Phys. D Appl. Phys. 2020, 53, 213002. [Google Scholar] [CrossRef]
- Ben Yahia, B.; Amara, M.; Gallard, M.; Burle, N.; Escoubas, S.; Guichet, C.; Putero, M.; Mocuta, C.; Richard, M.-I.; Chahine, R.; et al. In situ monitoring of stress change in GeTe thin films during thermal annealing and crystallization. Micro Nano Eng. 2018, 1, 63–67. [Google Scholar] [CrossRef]
- Noe, P.; Sabbione, C.; Bernier, N.; Castellani, N.; Fillot, F.; Hippert, F. Impact of interfaces on scenario of crystallization of phase change materials. Acta Mater. 2016, 110, 142–148. [Google Scholar] [CrossRef]
- Gallard, M.; Amara, M.S.; Putero, M.; Burle, N.; Guichet, C.; Escoubas, S.; Richard, M.-I.; Mocuta, C.; Chahine, R.R.; Bernard, M.; et al. New insights into thermomechanical behavior of GeTe thin films during crystallization. Acta Mater. 2020, 191, 60–69. [Google Scholar] [CrossRef]
- Gallard, M. Etude in situ de la cristallisation et des contraintes dans des nanostructures de GeTe par diffraction du rayonnement X synchrotron. Ph.D. Thesis, Aix Marseille Université, Marseille, France, 5 March 2019. [Google Scholar]
- Sun, X.; Thelander, E.; Gerlach, J.W.; Decker, U.; Rauschenbach, B. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition. J. Phys. D Appl. Phys. 2015, 48, 295304. [Google Scholar] [CrossRef]
- Zhou, X.; Dong, W.; Zhang, H.; Simpson, R. A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation. Sci. Rep. 2015, 5, 11150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaltaf, R.; Durgun, E.; Raty, J.-Y.; Ghosez, P.; Gonze, X. Dynamical, dielectric, and elastic properties of GeTe investigated with first-principles density functional theory. Phys. Rev. B 2008, 78, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, T.P.L.; Kalb, J.; Njoroge, W.K.; Wamwangi, D.; Wuttig, M.; Spaepen, F. Mechanical stresses upon crystallization in phase change materials. Appl. Phys. Lett. 2001, 79, 3597–3599. [Google Scholar] [CrossRef]
- Lee, J.K.; Barnett, D.M.; Aaronson, H.I. The elastic strain energy of coherent ellipsoidal precipitates in anisotropic crystalline solids. Met. Mater. Trans. A 1977, 8, 963–970. [Google Scholar] [CrossRef]
- Angell, C.A. Formation of Glasses from Liquids and Biopolymers. Science 1995, 267, 1924–1935. [Google Scholar] [CrossRef] [Green Version]
- Mauro, J.C.; Yue, Y.; Ellison, A.J.; Gupta, P.K.; Allan, U.C. Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. 2009, 106, 19780–19784. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; De Wal, D.; Brink, G.H.T.; Palasantzas, G.; Kooi, B.J. Resolving crystallization kinetics of GeTe phase-change nanoparticles by ultrafast calorimetry. Cryst. Growth Des. 2017, 18, 1041–1046. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, G.; Song, L.; Shen, X.; Wang, J.-Q.; Huo, J.; Wang, R.; Xu, T.; Dai, S.; Nie, Q. Unraveling the crystallization kinetics of supercooled liquid GeTe by ultrafast calorimetry. Cryst. Growth Des. 2017, 17, 3687–3693. [Google Scholar] [CrossRef]
- Witvrouw, A.; Spaepen, F. Viscosity and elastic constants of amorphous Si and Ge. J. Appl. Phys. 1993, 74, 7154–7161. [Google Scholar] [CrossRef]
- Witvrouw, A.; Spaepen, F. Determination of the plane stress elastic constants of thin films from substrate curvature measurements: Applications to amorphous metals. J. Appl. Phys. 1993, 73, 7344–7350. [Google Scholar] [CrossRef]
- Kalb, J.; Spaepen, F.; Pedersen, T.P.L.; Wuttig, M. Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 2003, 94, 4908. [Google Scholar] [CrossRef]
- Taub, A.; Spaepen, F. The kinetics of structural relaxation of a metallic glass. Acta Met. 1980, 28, 1781–1788. [Google Scholar] [CrossRef]
- Zhang, S.-L.; D’Heurle, F. Stresses from solid state reactions: A simple model, silicides. Thin Solid Films 1992, 213, 34–39. [Google Scholar] [CrossRef]
- Rivero, C.; Gergaud, P.; Gailhanou, M.; Boivin, P.; Fornara, P.; Niel, S.; Thomas, O. Stress development and relaxation during reaction of a cobalt film with a silicon substrate. Defect Diffus. Forum 2005, 237, 518–523. [Google Scholar] [CrossRef]
- Christian, J.W. The Theory of Transformations in Metals and Alloys, 1st ed; Elsevier: Oxford, UK, 2002. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tholapi, R.; Gallard, M.; Burle, N.; Guichet, C.; Escoubas, S.; Putero, M.; Mocuta, C.; Richard, M.-I.; Chahine, R.; Sabbione, C.; et al. Stress Buildup Upon Crystallization of GeTe Thin Films: Curvature Measurements and Modelling. Nanomaterials 2020, 10, 1247. https://doi.org/10.3390/nano10061247
Tholapi R, Gallard M, Burle N, Guichet C, Escoubas S, Putero M, Mocuta C, Richard M-I, Chahine R, Sabbione C, et al. Stress Buildup Upon Crystallization of GeTe Thin Films: Curvature Measurements and Modelling. Nanomaterials. 2020; 10(6):1247. https://doi.org/10.3390/nano10061247
Chicago/Turabian StyleTholapi, Rajkiran, Manon Gallard, Nelly Burle, Christophe Guichet, Stephanie Escoubas, Magali Putero, Cristian Mocuta, Marie-Ingrid Richard, Rebecca Chahine, Chiara Sabbione, and et al. 2020. "Stress Buildup Upon Crystallization of GeTe Thin Films: Curvature Measurements and Modelling" Nanomaterials 10, no. 6: 1247. https://doi.org/10.3390/nano10061247
APA StyleTholapi, R., Gallard, M., Burle, N., Guichet, C., Escoubas, S., Putero, M., Mocuta, C., Richard, M. -I., Chahine, R., Sabbione, C., Bernard, M., Fellouh, L., Noé, P., & Thomas, O. (2020). Stress Buildup Upon Crystallization of GeTe Thin Films: Curvature Measurements and Modelling. Nanomaterials, 10(6), 1247. https://doi.org/10.3390/nano10061247