Molecular Dynamics Simulation of Polyacrylamide Adsorption on Cellulose Nanocrystals
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schaefer, D.W.; Justice, R.S. How nano are Nanocomposites? Macromolecules 2007, 40, 8501–8517. [Google Scholar] [CrossRef]
- Kumar, S.K.; Krishnamoorti, R. Nanocomposites: Structure, phase behavior, and properties. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 37–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moniruzzaman, M.; Winey, K.I. Polymer Nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205. [Google Scholar] [CrossRef]
- Ganesan, V. Some issues in polymer Nanocomposites: Theoretical and modeling opportunities for polymer physics. J. Polym. Sci. Part B 2008, 46, 2666–2671. [Google Scholar] [CrossRef]
- Vogiatzis, G.G.; Theodorou, D.N. Multiscale molecular simulations of polymer-matrix Nanocomposites or what molecular simulations have taught us about the fascinating Nanoworld. Arch. Comput. Methods Eng. 2018, 25, 591–645. [Google Scholar] [CrossRef] [Green Version]
- Sgouros, A.P.; Vogiatzis, G.G.; Megariotis, G.; Tzoumanekas, C.; Theodorou, D.N. Multiscale simulations of graphite-capped polyethylene melts: Brownian dynamics/kinetic Monte Carlo compared to atomistic calculations and experiment. Macromolecules 2019, 52, 7503–7523. [Google Scholar] [CrossRef]
- Sgouros, A.P.; Vogiatzis, G.G.; Kritikos, G.; Boziki, A.; Nikolakopoulou, A.; Liveris, D.; Theodorou, D.N. Molecular simulations of free and graphite capped polyethylene films: Estimation of the interfacial free energies. Macromolecules 2017, 50, 8827–8844. [Google Scholar] [CrossRef]
- Theodorou, D.N.; Vogiatzis, G.G.; Kritikos, G. Self-consistent-field study of adsorption and desorption kinetics of polyethylene melts on graphite and comparison with atomistic simulations. Macromolecules 2014, 47, 6964–6981. [Google Scholar] [CrossRef] [Green Version]
- Julkapli, N.M.; Bagheri, S. Progress on nanocrystalline cellulose biocomposites. React. Funct. Polym. 2017, 112, 9–21. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Rojas, O.J.; Lokanathan, A.R.; Kontturi, E.; Laine, J.; Bock, H. The unusual interactions between polymer grafted cellulose nanocrystal aggregates. Soft Matter 2013, 9, 8965–8973. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Monti, S.; Mathew, A.P. Evaluation of nanocellulose interaction with water pollutants using nanocellulose colloidal probes and molecular dynamic simulations. Carbohyd. Polym. 2020, 229, 115510. [Google Scholar] [CrossRef]
- Mehandzhiyski, A.Y.; Rolland, N.; Garg, M.; Wohlert, J.; Linares, M.; Zozoulenko, I. A novel supra coarse-grained model for cellulose. Cellulose 2020, 27, 4221–4234. [Google Scholar] [CrossRef] [Green Version]
- Rolland, N.; Mehandzhiyski, A.Y.; Garg, M.; Linares, M.; Zozoulenko, I.V. New patchy particle model with anisotropic patches for molecular dynamics simulations: Application to a coarse-grained model of cellulose Nanocrystal. J. Chem. Theory Comput. 2020, 16, 3699–3711. [Google Scholar] [CrossRef] [PubMed]
- Bergenstråhle, M. Crystalline Cellulose in Bulk And at Interfaces as Studied by Atomistic Computer Simulations. Doctoral Thesis, KTH School of Chemical Science and Engineering, Stockholm, Sweden, 2008. [Google Scholar]
- Qiao, Q.; Li, X.; Huang, L. Crystalline cellulose under pyrolysis conditions: The structure−property evolution via reactive molecular dynamics simulations. J. Chem. Eng. Data 2020, 65, 360–372. [Google Scholar] [CrossRef]
- Muthoka, R.M.; Kim, H.C.; Kim, J.W.; Zhai, L.; Pooja, S.; Panicker, P.S.; Kim, J. Steered pull simulation to determine Nanomechanical properties of cellulose Nanofiber. Materials 2020, 13, 710. [Google Scholar] [CrossRef] [Green Version]
- Sinko, R.; Keten, S. Traction–separation laws and stick–slip shear phenomenon of interfaces between cellulose nanocrystals. J. Mech. Phys. Solids 2015, 78, 526–539. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Tyrikos-Ergas, T.; Zhu, Y.; Fittolani, G.; Bordoni, V.; Singhal, A.; Fair, R.J.; Grafmüller, A.; Seeberger, P.H.; Delbianco, M. Systematic hydrogen bond manipulations to establish polysaccharide structure-property correlations. Angew. Chem. Int. Ed. 2019, 131, 13261–13266. [Google Scholar] [CrossRef] [Green Version]
- Mazeau, K.; Heux, L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 2003, 107, 2394–2403. [Google Scholar] [CrossRef]
- Kulasinski, K.; Keten, S.; Churakov, S.V.; Derome, D.; Carmeliet, J. A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose 2014, 21, 1103–1116. [Google Scholar] [CrossRef]
- Crawford, B.; Ismail, A.E. Insight into cellulose dissolution with the tetrabutylphosphonium chloride–water mixture using molecular dynamics simulations. Polymers 2020, 12, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahputra, I.H.; Alexiadis, A.; Adams, M.J. Effects of moisture on the mechanical properties of microcrystalline cellulose and the mobility of the water molecules as studied by the hybrid molecular mechanics–molecular dynamics simulation method. J. Polym. Sci. Pol. Phys. 2019, 57, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Khazraji, A.C.; Robert, S. Interaction effects between cellulose and water in nanocrystalline and amorphous regions: A novel approach using molecular modeling. J. Nanomater. 2013, 409676. [Google Scholar] [CrossRef] [Green Version]
- Krishna, S.; Patel, C.M. Computational and experimental study of mechanical properties of Nylon 6 nanocomposites reinforced with nanomilled cellulose. Mech. Mater. 2020, 143, 103318. [Google Scholar] [CrossRef]
- Gurina, D.; Surov, O.; Voronova, M.; Zakharov, A.; Kiselev, M. Water effects on molecular adsorption of Poly(N-vinyl-2-pyrrolidone) on cellulose Nanocrystals surfaces: Molecular dynamics simulations. Materials 2019, 12, 2155. [Google Scholar] [CrossRef] [Green Version]
- Voronova, M.; Rubleva, N.; Kochkina, N.; Afineevskii, A.; Zakharov, A.; Surov, O. Preparation and characterization of Polyvinylpyrrolidone/Cellulose nanocrystals. Nanomaterials 2018, 8, 1011. [Google Scholar] [CrossRef] [Green Version]
- Schuberth, S.; Münstedt, H. Transient elongational viscosities of aqueous polyacrylamide solutions measured with an optical rheometer. Rheol. Acta 2008, 47, 139–147. [Google Scholar] [CrossRef]
- Xu, L.N. Viscoelasticity of mixed polyacrylamide solution. J. Cent. South Univ. Technol. 2008, 15, 443–446. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. Gromacs: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Nose, S. A Molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Clarendon Press: London, UK, 1987; 385p. [Google Scholar]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8592. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Tirado-Rives, J. The OPLS potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An automated force field topology builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 4026–4037. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082. [Google Scholar] [CrossRef]
- Gomes, T.C.F.; Skaf, M.S. Cellulose-Builder: A toolkit for building crystalline structures of cellulose. J. Comput.Chem. 2012, 33, 1338–1346. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Fixman, M. Radius of gyration of polymer chains. J. Chem. Phys. 1962, 36, 306–310. [Google Scholar] [CrossRef]
- Cooper, A.I. Polymer synthesis and processing using supercritical carbon dioxide. J. Mater. Chem. 2000, 10, 207–234. [Google Scholar] [CrossRef]
- Chen, P.; Yao, L.; Liu, Y.; Luo, J.; Zhou, G.; Jiang, B. Experimental and theoretical study of dilute polyacrylamide solutions: Effect of salt concentration. J. Mol. Model. 2012, 18, 3153–3160. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Chen, P.K.; Luo, J.H.; Zhou, G.; Jiang, B. Molecular simulation of dilute Polyacrylamide solutions. Acta Phys. Chim. Sin. 2010, 26, 2907–2914. [Google Scholar] [CrossRef]
- Rapaport, D.C. Hydrogen bonds in water: Network organization and lifetimes. Mol. Phys. 1983, 50, 1151–1162. [Google Scholar] [CrossRef]
- Singh, S.; Srivastavaand, S.K.; Singh, D.K. Hydrogen bonding patterns in differentacrylamide–water clusters: Microsolvation probed by micro Raman spectroscopy and DFT calculations. RSC Adv. 2014, 4, 1761–1774. [Google Scholar] [CrossRef]
- Chen, M.; Coasne, B.; Guyer, R.; Derome, D. Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers. Nat. Commun. 2018, 9, 3507. [Google Scholar] [CrossRef]
System | Medium and CNC Type | N (PAM) | N (CNC) | N (Water) | t, ns | L, nm |
---|---|---|---|---|---|---|
System 1 | vacuum | 1 | - | - | 10 | 6.0 |
System 2 | water | 1 | - | 6916 | 10 | 6.0 |
System 3 | water hydrophobic CNC | 3 | 1 | 31322 | 60 | 9.0 |
System 4 | vacuum hydrophobic CNC | 3 | 1 | - | 10 | 9.0 |
System 5 | water hydrophilic CNC | 3 | 1 | 31322 | 60 | 9.0 |
System 6 | vacuum hydrophilic CNC | 3 | 1 | - | 10 | 9.0 |
System 7 | water hydrophobic CNC | 64 | 1 | 273740 | 15 | 20.5 |
System 8 | vacuum hydrophobic CNC | 64 | 1 | - | 10 | 20.5 |
System 9 | water hydrophilic CNC | 64 | 1 | 273740 | 15 | 20.5 |
System 10 | vacuum hydrophilic CNC | 64 | 1 | - | 10 | 20.5 |
System | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
<nHB> | PAM–PAM | 0.76 | 0.30 | 0.35 | 0.66 | 0.40 | 0.76 | 0.31 | 1.00 | 0.32 | 1.03 |
PAM–Water | - | 2.01 | 1.80 | - | 1.83 | - | 1.93 | - | 1.94 | - | |
PAM–CNC | - | - | 0.08 | 0.32 | 0.003 | 0.22 | 0.02 | 0.76 | 0.04 | 1.03 | |
CNC–Water | - | - | 2.91 | - | 3.22 | - | 2.90 | - | 3.24 | - | |
CNC–CNC | - | - | 3.61 | 4.26 | 3.31 | 3.88 | 3.66 | 4.3 | 3.40 | 3.86 | |
Water–Water | - | 3.57 | 3.54 | - | 3.56 | - | 3.57 | - | 3.57 | - | |
τ, ps | PAM–PAM | 1.71 | 1.47 | 1.52 | 1.58 | 1.62 | 1.61 | 1.45 | 1.63 | 1.44 | 1.67 |
PAM–Water | - | 2.06 | 1.79 | - | 2.14 | - | 1.95 | - | 1.94 | - | |
PAM–CNC | - | - | 2.40 | 2.85 | - | 2.83 | 2.37 | 3.07 | 2.14 | 2.81 | |
CNC–Water | - | - | 3.19 | - | 3.87 | - | 3.21 | - | 3.86 | - | |
CNC–CNC | - | - | 6.50 | 6.62 | 6.87 | 5.64 | 7.09 | 6.88 | 8.01 | 6.87 | |
Water–Water | - | 2.81 | 2.77 | - | 2.77 | - | 2.77 | - | 2.77 | - | |
Rg, nm | PAM | 1.00 | 1.48 | 1.28 | 1.19 | 1.34 | 1.30 | 1.21 | 0.95 | 1.22 | 0.96 |
Re-t-e, nm | PAM | 0.99 | 3.56 | 3.55 | 3.04 | 3.56 | 3.75 | 2.78 | 1.75 | 2.79 | 1.81 |
<Nc> | PAM–CNC | - | - | 199 | 668 | 5 | 262 | 66 | 1519 | 73 | 1387 |
<rmin> nm | PAM–CNC | - | - | 2.07 | 1.67 | 2.19 | 2.17 | 2.06 | 1.62 | 1.97 | 1.63 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurina, D.; Surov, O.; Voronova, M.; Zakharov, A. Molecular Dynamics Simulation of Polyacrylamide Adsorption on Cellulose Nanocrystals. Nanomaterials 2020, 10, 1256. https://doi.org/10.3390/nano10071256
Gurina D, Surov O, Voronova M, Zakharov A. Molecular Dynamics Simulation of Polyacrylamide Adsorption on Cellulose Nanocrystals. Nanomaterials. 2020; 10(7):1256. https://doi.org/10.3390/nano10071256
Chicago/Turabian StyleGurina, Darya, Oleg Surov, Marina Voronova, and Anatoly Zakharov. 2020. "Molecular Dynamics Simulation of Polyacrylamide Adsorption on Cellulose Nanocrystals" Nanomaterials 10, no. 7: 1256. https://doi.org/10.3390/nano10071256
APA StyleGurina, D., Surov, O., Voronova, M., & Zakharov, A. (2020). Molecular Dynamics Simulation of Polyacrylamide Adsorption on Cellulose Nanocrystals. Nanomaterials, 10(7), 1256. https://doi.org/10.3390/nano10071256