Current Approaches and Techniques in Physiologically Based Pharmacokinetic (PBPK) Modelling of Nanomaterials
Abstract
:1. Introduction
2. General Approaches in PBPK Modelling of Nanomaterials
2.1. Top-Down and Bottom-Up as Well as Deterministic and Probabilistic Approaches
2.2. Transport and Permeation Processes—Perfusion-Limited versus Permeability-Limited
3. Pharmacokinetic Modelling
3.1. Absorption
3.2. Distribution
- Non-sinusoidal non-fenestrated blood capillary type (brain, heart, lung, muscles)
- Non-sinusoidal fenestrated blood capillary type (intestines, kidneys, skin, testes)
- Sinusoidal blood capillary type with pores larger than 15 nm (liver, spleen)
- Myeloid bone marrow sinusoidal blood capillary type (bone marrow).
3.2.1. Permeability of Various Organs to Nanomaterials
3.2.2. Partition Coefficients
3.2.3. The Mononuclear Phagocyte system
3.3. Metabolism
3.4. Excretion
4. Model Evaluation and Validation
5. Application of PBPK Models to Hazard Assessment of Nanomaterials
6. Application of PBPK Models to Risk Assessment of Nanomaterials
7. Overall Assessment and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADME | Absorption, distribution, metabolism and elimination |
Ag | Silver |
Ag2S | Silver sulfide |
ALI | Air-liquid interface |
Au | Gold |
AUC | Area under the curve |
BBB | Blood–brain barrier |
BMD | Benchmark dose |
BMC | Benchmark concentration |
CeO2 | Cerium dioxide |
CSV | Comma-separated values |
DC | Distribution coefficient |
ERDEM | Exposure Related Dose Estimating Model |
GI | Gastrointestinal |
ICP-MS | Inductively Coupled Plasma–Mass Spectrometry |
ICRP | International Commission on Radiological Protection |
IVIVE | In vitro to in vivo extrapolation |
Kow | Distribution coefficient |
LOAEL | Lowest-observed-adverse-effect level |
MATLAB | MATrix LABoratory |
MCMC | Markov chain Monte Carlo |
ME | Modelling efficiency |
MOA | Mode of action |
MPPD | Multiple-Path Particle Dosimetry |
MPS | Mononuclear phagocyte system |
MWCNTs | Multi-walled carbon nanotubes |
NMs | Nanomaterials |
NOAEL | No-observed-adverse-effect level |
NSE | Nash-Sutcliffe efficiency |
PAA | Polyacrylamide |
PEG | Polyethylene glycol |
PBPD | Physiology-based pharmacodynamic |
PBPK | Physiologically-based pharmacokinetic |
PCs | Partition coefficients |
Pt | Permeability |
PLGA | Poly(lactic-co-glycolic) acid |
QDs | Quantum dots |
QPPRs | Quantitative property-property relationships |
QSPR | Quantitative structure/property relationship |
RES | Reticuloendothelial system |
ROS | Reactive oxygen species |
RMSE | Root mean square error |
SPIONS | Superparamagnetic iron oxide nanoparticles |
TiO2 | Titanium dioxide |
ZnO | Zinc oxide |
References
- U.S.EPA. Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment; U.S. Environmental Protection Agency: Washington DC, USA, 2006.
- Chen, Y.; Jin, J.Y.; Mukadam, S.; Malhi, V.; Kenny, J.R. Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: Strategy and approach during the drug discovery phase with four case studies. Biopharm. Drug Dispos. 2012, 33, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.A.; McLanahan, E.D.; Bushnell, P.J.; Hunter, E.S., III; El-Masri, H. Species extrapolation of life-stage physiologically-based pharmacokinetic (PBPK) models to investigate the developmental toxicology of ethanol using in vitro to in vivo (IVIVE) methods. Toxicol. Sci. 2014, 143, 512–535. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.P.; Delp, M.D.; Lindstedt, S.L.; Rhomberg, L.R.; Beliles, R.P. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 1997, 13, 407–484. [Google Scholar] [CrossRef]
- Li, M.; Al-Jamal, K.T.; Kostarelos, K.; Reineke, J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 2010, 4, 6303–6317. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Chen, J.W.; Chang, L.W.; Wu, J.P.; Redding, L.; Chang, H.; Yeh, T.K.; Yang, C.S.; Tsai, M.H.; Wang, H.J.; et al. Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice. Environ. Sci. Technol. 2008, 42, 6264–6270. [Google Scholar] [CrossRef]
- Lee, H.A.; Leavens, T.L.; Mason, S.E.; Monteiro-Riviere, N.A.; Riviere, J.E. Comparison of quantum dot biodistribution with a blood-flow-limited physiologically based pharmacokinetic model. Nano Lett. 2009, 9, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wang, H.; Grice, J.E.; Li, L.; Liu, X.; Xu, Z.P.; Roberts, M.S. Physiologically based pharmacokinetic model for long-circulating inorganic nanoparticles. Nano Lett. 2016, 16, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Péry, A.R.R.; Brochot, C.; Hoet, P.H.M.; Nemmar, A.; Bois, F.Y. Development of a physiologically based kinetic model for 99m-Technetium-labelled carbon nanoparticles inhaled by humans. Inhal. Toxicol. 2009, 21, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Lankveld, D.P.K.; Oomen, A.G.; Krystek, P.; Neigh, A.; Troost – de Jong, A.; Noorlander, C.W.; Van Eijkeren, J.C.H.; Geertsma, R.E.; De Jong, W.H. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010, 31, 8350–8361. [Google Scholar] [CrossRef]
- Bachler, G.; von Goetz, N.; Hungerbühler, K. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int. J. Nanomed. 2013, 8, 3365–3382. [Google Scholar] [CrossRef] [Green Version]
- Demin, V.A.; Gmoshinsky, I.V.; Demin, V.F.; Anciferova, A.A.; Buzulukov, Y.P.; Khotimchenko, S.A.; Tutelyan, V.A. Modeling interorgan distribution and bioaccumulation of engineered nanoparticles (using the example of silver nanoparticles). Nanotechnol. Russ. 2015, 10, 288–296. [Google Scholar] [CrossRef]
- Mager, D.E.; Mody, V.; Xu, C.; Forrest, A.; Lesniak, W.G.; Nigavekar, S.S.; Kariapper, M.T.; Minc, L.; Khan, M.K.; Balogh, L.P. Physiologically based pharmacokinetic model for composite nanodevices: Effect of charge and size on in vivo disposition. Pharm. Res. 2012, 29, 2534–2542. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Monteiro-Riviere, N.A.; Riviere, J.E. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice. Nanotoxicology 2016, 10, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Aborig, M.; Malik, P.R.V.; Nambiar, S.; Chelle, P.; Darko, J.; Mutsaers, A.; Edginton, A.N.; Fleck, A.; Osei, E.; Wettig, S. Biodistribution and physiologically-based pharmacokinetic modeling of gold nanoparticles in mice with interspecies extrapolation. Pharmaceutics 2019, 11, 179. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Liu, H.; Ma, Y.; Miao, Y.; Fu, X.; Deng, Q. Endocytosis mechanism in physiologically-based pharmacokinetic modeling of nanoparticles. Toxicol. Appl. Pharmacol. 2019, 384, 114765. [Google Scholar] [CrossRef]
- Bachler, G.; von Goetz, N.; Hungerbuhler, K. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology 2015, 9, 373–380. [Google Scholar] [CrossRef]
- Laomettachit, T.; Liangruksa, M. Physiologically-based pharmacokinetic (PBPK) model of TiO2 nanoparticles’ bio-distribution in rat tissues. NSTI-Nanotech TechConnect Briefs 2014, 2, 403–406. [Google Scholar]
- Elgrabli, D.; Beaudouin, R.; Jbilou, N.; Floriani, M.; Pery, A.; Rogerieux, F.; Lacroix, G. Biodistribution and clearance of TiO2 nanoparticles in rats after intravenous injection. PLoS ONE 2015, 10, e0124490. [Google Scholar] [CrossRef]
- Laomettachit, T.; Puri, I.K.; Liangruksa, M. A two-step model of TiO(2) nanoparticle toxicity in human liver tissue. Toxicol. Appl. Pharmacol. 2017, 334, 47–54. [Google Scholar] [CrossRef]
- Li, D.; Morishita, M.; Wagner, J.G.; Fatouraie, M.; Wooldridge, M.; Eagle, W.E.; Barres, J.; Carlander, U.; Emond, C.; Jolliet, O. In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rats. Part. Fibre Toxicol. 2016, 13, 45. [Google Scholar] [CrossRef] [Green Version]
- Carlander, U.; Moto, T.P.; Desalegn, A.A.; Yokel, R.A.; Johanson, G. Physiologically based pharmacokinetic modeling of nanoceria systemic distribution in rats suggests dose- and route-dependent biokinetics. Int. J. Nanomed. 2018, 13, 2631–2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.-Y.; Cheng, Y.-H.; Hsieh, N.-H.; Wu, B.-C.; Chou, W.-C.; Ho, C.-C.; Chen, J.-K.; Liao, C.-M.; Lin, P. Physiologically based pharmacokinetic modeling of zinc oxide nanoparticles and zinc nitrate in mice. Int. J. Nanomed. 2015, 10, 6277–6292. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Johanson, G.; Emond, C.; Carlander, U.; Philbert, M.; Jolliet, O. Physiologically based pharmacokinetic modeling of polyethylene glycol-coated polyacrylamide nanoparticles in rats. Nanotoxicology 2014, 8, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Panagi, Z.; Avgoustakis, K.; Reineke, J. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int. J. Nanomed. 2012, 7, 1345–1356. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.; Wang, X.; Wang, H.; Zhang, X.; Wang, Y.; Wu, B. Elucidating the in vivo fate of nanocrystals using a physiologically based pharmacokinetic model: A case study with the anticancer agent SNX-2112. Int. J. Nanomed. 2015, 10, 2521–2535. [Google Scholar] [CrossRef] [Green Version]
- Opitz, A.W.; Wickstrom, E.; Thakur, M.L.; Wagner, N.J. Physiologically based pharmacokinetics of molecular imaging nanoparticles for mRNA detection determined in tumor-bearing mice. Oligonucleotides 2010, 20, 117–125. [Google Scholar] [CrossRef]
- Gilkey, M.J.; Krishnan, V.; Scheetz, L.; Jia, X.; Rajasekaran, A.K.; Dhurjati, P.S. Physiologically based pharmacokinetic modeling of fluorescently labeled block copolymer nanoparticles for controlled drug delivery in leukemia therapy. CPT Pharmacomet. Syst. Pharmacol. 2015, 4, e00013. [Google Scholar] [CrossRef]
- Tylutki, Z.; Polak, S.; Wiśniowska, B. Top-down, bottom-up and middle-out strategies for drug cardiac safety assessment via modeling and simulations. Curr. Pharmacol. Rep. 2016, 2, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Rowland, M.; Huang, S.M. Best practice in the use of physiologically based pharmacokinetic modeling and simulation to address clinical pharmacology regulatory questions. Clin. Pharmacol. Ther. 2012, 92, 17–20. [Google Scholar] [CrossRef]
- Jamei, M. Recent advances in development and application of physiologically-based pharmacokinetic (PBPK) models: A transition from academic curiosity to regulatory acceptance. Curr. Pharmacol. Rep. 2016, 2, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.; Lu, C. PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B 2016, 6, 430–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Programme on Chemical Safety. Principles of Characterizing and Applying Human Exposure Models; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Li, D.; Emond, C.; Johanson, G.; Jolliet, O. Using a PBPK model to study the influence of different characteristics of nanoparticles on their biodistribution. J. Phys. Conf. Ser. 2013, 429, 012019. [Google Scholar] [CrossRef] [Green Version]
- Finley, B.; Paustenbach, D. The benefits of probabilistic exposure assessment: Three case studies involving contaminated air, water and soil1. Risk Anal. 1994, 14, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Teo, S.; Seng, K.-Y. Sensitivity analysis on a physiologically-based pharmacokinetic and pharmacodynamic model for diisopropylfluorophosphate-induced toxicity in mice and rats. Toxicol. Mech. Methods 2009, 19, 486–497. [Google Scholar] [CrossRef] [PubMed]
- Clewell, H.J., III; Andersen, M.E. Use of physiologically based pharmacokinetic modeling to investigate individual versus population risk. Toxicology 1996, 111, 315–329. [Google Scholar] [CrossRef]
- Bois, F.Y.; Jamei, M.; Clewell, H.J. PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology 2010, 278, 256–267. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.C.; Covington, T.R.; Clewell, H.J. Investigation of the impact of pharmacokinetic variability and uncertainty on risks predicted with a pharmacokinetic model for chloroform. Toxicology 1996, 111, 289–303. [Google Scholar] [CrossRef]
- Gentry, P.R.; Hack, C.E.; Haber, L.; Maier, A.; Clewell, H.J., III. An approach for the quantitative consideration of genetic polymorphism data in chemical risk assessment: Examples with warfarin and parathion. Toxicol. Sci. Off. J. Soc. Toxicol. 2002, 70, 120–139. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.L., Jr.; Bull, R.J.; Clewell, H.J., III. Development of a rat and human PBPK model for bromate and estimation of human equivalent concentrations in drinking water. Int. J. Environ. Health Res. 2019, 1–12. [Google Scholar] [CrossRef]
- Jonsson, F. Physiologically Based Pharmacokinetic Modeling in Risk Assessment: Development of Bayesian Population Methods; Uppsala University: Stockholm, Sweden, 2001. [Google Scholar]
- Gisleskog, P.O.; Karlsson, M.O.; Beal, S.L. Use of prior information to stabilize a population data analysis. J. Pharmacokinet. Pharmacodyn. 2002, 29, 473–505. [Google Scholar] [CrossRef]
- Paulo, M.J.; van der Voet, H.; Jansen, M.J.W.; ter Braak, C.J.F.; van Klaveren, J.D. Risk assessment of dietary exposure to pesticides using a Bayesian method. Pest Manag. Sci. 2005, 61, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-H.; Riviere, J.E.; Monteiro-Riviere, N.A.; Lin, Z. Probabilistic risk assessment of gold nanoparticles after intravenous administration by integrating in vitro and in vivo toxicity with physiologically based pharmacokinetic modeling. Nanotoxicology 2018, 12, 453–469. [Google Scholar] [CrossRef] [PubMed]
- Young, J.F.; Branham, W.S.; Sheehan, D.M.; Baker, M.E.; Wosilait, W.D.; Luecke, R.H. Physiological “constants” for PBPK models for pregnancy. J. Toxicol. Environ. Health 1997, 52, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Gaohua, L.; Abduljalil, K.; Jamei, M.; Johnson, T.N.; Rostami-Hodjegan, A. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br. J. Clin. Pharmacol. 2012, 74, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Yoon, M.; Nong, A.; Clewell, H.J., III; Taylor, M.D.; Dorman, D.C.; Andersen, M.E. Evaluating placental transfer and tissue concentrations of manganese in the pregnant rat and fetuses after inhalation exposures with a PBPK model. Toxicol. Sci. 2009, 112, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.S.; Della Casa Alberighi, O.; Läer, S.; Meibohm, B. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin. Pharmacol. Ther. 2012, 92, 40–49. [Google Scholar] [CrossRef]
- Wick, P.; Malek, A.; Manser, P.; Meili, D.; Maeder-Althaus, X.; Diener, L.; Diener, P.-A.; Zisch, A.; Krug, H.F.; von Mandach, U. Barrier capacity of human placenta for nanosized materials. Environ. Health Perspect. 2010, 118, 432–436. [Google Scholar] [CrossRef]
- Huang, J.-P.; Hsieh, P.C.H.; Chen, C.-Y.; Wang, T.-Y.; Chen, P.-C.; Liu, C.-C.; Chen, C.-C.; Chen, C.-P. Nanoparticles can cross mouse placenta and induce trophoblast apoptosis. Placenta 2015, 36, 1433–1441. [Google Scholar] [CrossRef]
- Pietroiusti, A.; Vecchione, L.; Malvindi, M.A.; Aru, C.; Massimiani, M.; Camaioni, A.; Magrini, A.; Bernardini, R.; Sabella, S.; Pompa, P.P.; et al. Relevance to investigate different stages of pregnancy to highlight toxic effects of nanoparticles: The example of silica. Toxicol. Appl. Pharmacol. 2018, 342, 60–68. [Google Scholar] [CrossRef]
- Yuan, D.; He, H.; Wu, Y.; Fan, J.; Cao, Y. Physiologically based pharmacokinetic modeling of nanoparticles. J. Pharm. Sci. 2019, 108, 58–72. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.; Rowland-Yeo, K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e63. [Google Scholar] [CrossRef] [PubMed]
- Khalil, F.; Läer, S. Physiologically based pharmacokinetic modeling: Methodology, applications and limitations with a focus on its role in pediatric drug development. J. Biomed. Biotechnol. 2011, 2011, 907461. [Google Scholar] [CrossRef]
- Lin, Z.; Monteiro-Riviere, N.A.; Kannan, R.; Riviere, J.E. A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles. Nanomedicine 2015, 11, 107–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, M.D.; Beard, D.A. Development of appropriate equations for physiologically based pharmacokinetic modeling of permeability-limited and flow-limited transport. J. Pharmacokinet. Pharmacodyn. 2011, 38, 405–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Tong, T.; Xie, M.; Gaillard, J.-F. Lifetime and dissolution kinetics of zinc oxide nanoparticles in aqueous media. Nanotechnology 2016, 27, 324001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, R.; Levard, C.; Judy, J.D.; Unrine, J.M.; Durenkamp, M.; Martin, B.; Jefferson, B.; Lowry, G.V. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ. Sci. Technol. 2014, 48, 104–112. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Filon, F.L.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. [Google Scholar] [CrossRef]
- Docter, D.; Westmeier, D.; Markiewicz, M.; Stolte, S.; Knauer, S.K.; Stauber, R.H. The nanoparticle biomolecule corona: Lessons learned–challenge accepted? Chem. Soc. Rev. 2015, 44, 6094–6121. [Google Scholar] [CrossRef] [Green Version]
- des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y.J.; Préat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release Off. J. Control. Release Soc. 2006, 116, 1–27. [Google Scholar] [CrossRef]
- Gelperina, S.; Kisich, K.; Iseman, M.D.; Heifets, L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 2005, 172, 1487–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGeer, J.C.; Brix, K.V.; Skeaff, J.M.; DeForest, D.K.; Brigham, S.I.; Adams, W.J.; Green, A. Inverse relationship between bioconcentration factor and exposure concentration for metals: Implications for hazard assessment of metals in the aquatic environment. Environ. Toxicol. Chem. 2003, 22, 1017–1037. [Google Scholar] [CrossRef] [PubMed]
- Dykman, L.A.; Khlebtsov, N.G. Uptake of engineered gold nanoparticles into mammalian cells. Chem. Rev. 2014, 114, 1258–1288. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zou, P.; Tyner, K.; Lee, S. Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. AAPS J. 2017, 19, 26–42. [Google Scholar] [CrossRef]
- dos Santos, T.; Varela, J.; Lynch, I.; Salvati, A.; Dawson, K.A. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 2011, 7, 3341–3349. [Google Scholar] [CrossRef] [Green Version]
- Farcal, L.R.; Uboldi, C.; Mehn, D.; Giudetti, G.; Nativo, P.; Ponti, J.; Gilliland, D.; Rossi, F.; Bal-Price, A. Mechanisms of toxicity induced by SiO2 nanoparticles of in vitro human alveolar barrier: Effects on cytokine production, oxidative stress induction, surfactant proteins A mRNA expression and nanoparticles uptake. Nanotoxicology 2013, 7, 1095–1110. [Google Scholar] [CrossRef]
- Vila, M.; Portolés, M.T.; Marques, P.A.A.P.; Feito, M.J.; Matesanz, M.C.; Ramírez-Santillán, C.; Gonçalves, G.; Cruz, S.M.A.; Nieto, A.; Vallet-Regi, M. Cell uptake survey of pegylated nanographene oxide. Nanotechnology 2012, 23, 465103. [Google Scholar] [CrossRef]
- Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662–668. [Google Scholar] [CrossRef]
- Shann, S.; Lau, C.M.; Thomas, S.N.; Jerome, W.G.; Maron, D.J.; Dickerson, J.H.; Hubbell, J.A.; Giorgio, T.D. Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. Int. J. Nanomed. 2012, 7, 799–813. [Google Scholar] [CrossRef] [Green Version]
- Suen, W.-L.L.; Chau, Y. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells. J. Pharm. Pharmacol. 2014, 66, 564–573. [Google Scholar] [CrossRef]
- Moss, O.R.; Wong, V.A. Alveolar macrophage accumulation rates, for 28 nm and 250 nm PSL, are mediated by separate mechanisms. J. Phys. Conf. Ser. 2009, 151, 012044. [Google Scholar] [CrossRef]
- Carlander, U.; Li, D.; Jolliet, O.; Emond, C.; Johanson, G. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles. Int. J. Nanomed. 2016, 11, 625–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hack, C.E.; Covington, T.R.; Lawrence, G.; Shipp, A.M.; Gentry, R.; Yager, J.; Clewell, H.J. A pharmacokinetic model of the intracellular dosimetry of inhaled nickel. J. Toxicol. Environ. Health Part A 2007, 70, 445–464. [Google Scholar] [CrossRef] [PubMed]
- Salvati, A.; Åberg, C.; dos Santos, T.; Varela, J.; Pinto, P.; Lynch, I.; Dawson, K.A. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: Toward models of uptake kinetics. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 818–826. [Google Scholar] [CrossRef]
- Silva, A.H.; Lima, E.; Mansilla, M.V.; Zysle, R.D.; Pisciotti, M.L.M.; Locatelli, C.; Rajoli, R.K.R.; Owen, A.; Creczynski-Pasa, T.B.; Siccardi, M. A physiologically based pharmacokinetic model to predict the superparamagnetic iron oxide nanoparticles (SPIONs) accumulation in vivo. Eur. J. Nanomed. 2017, 9, 79. [Google Scholar] [CrossRef]
- Oh, N.; Park, J.-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 2014, 9 (Suppl. 1), 51–63. [Google Scholar] [CrossRef] [Green Version]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine (London, England) 2008, 3, 703–717. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.S.; Ashitate, Y.; Lee, J.H.; Kim, S.H.; Matsui, A.; Insin, N.; Bawendi, M.G.; Semmler-Behnke, M.; Frangioni, J.V.; Tsuda, A. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotechnol. 2010, 28, 1300–1303. [Google Scholar] [CrossRef] [Green Version]
- Carlander, U. Physiologically Based Modelling of Nanoparticle Biodistribution and Biokinetics; Karolinska Institutet: Stockholm, Sweden, 2016. [Google Scholar]
- Bachler, G.; Losert, S.; Umehara, Y.; von Goetz, N.; Rodriguez-Lorenzo, L.; Petri-Fink, A.; Rothen-Rutishauser, B.; Hungerbuehler, K. Translocation of gold nanoparticles across the lung epithelial tissue barrier: Combining in vitro and in silico methods to substitute in vivo experiments. Part. Fibre Toxicol. 2015, 12, 18. [Google Scholar] [CrossRef] [Green Version]
- Kolanjiyil, A.V.; Kleinstreuer, C. Nanoparticle mass transfer from lung airways to systemic regions—Part I: Whole-lung aerosol dynamics. J. Biomech. Eng. 2013, 135, 121003. [Google Scholar] [CrossRef]
- Kolanjiyil, A.V.; Kleinstreuer, C. Nanoparticle mass transfer from lung airways to systemic regions—Part II: Multi-compartmental modeling. J. Biomech. Eng. 2013, 135, 121004. [Google Scholar] [CrossRef] [PubMed]
- Lesniak, A.; Fenaroli, F.; Monopoli, M.P.; Åberg, C.; Dawson, K.A.; Salvati, A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 2012, 6, 5845–5857. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentile, F.; Ferrari, M.; Decuzzi, P. The transport of nanoparticles in blood vessels: The effect of vessel permeability and blood rheology. Ann. Biomed. Eng. 2008, 36, 254–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, Y.T.; Adriani, G.; Beyer, S.; Nhan, P.-T.; Kamm, R.D.; Kah, J.C.Y. A facile method to probe the vascular permeability of nanoparticles in nanomedicine applications. Sci. Rep. 2017, 7, 707. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.S.H.; Chang, L.W.; Yang, C.S.; Lin, P. Pharmacokinetics and physiologically-based pharmacokinetic modeling of nanoparticles. J. Nanosci. Nanotechnol. 2010, 10, 8482–8490. [Google Scholar] [CrossRef]
- Oberdörster, G.; Elder, A.; Rinderknecht, A. Nanoparticles and the brain: Cause for concern? J. Nanosci. Nanotechnol. 2009, 9, 4996–5007. [Google Scholar] [CrossRef] [Green Version]
- Elder, A.; Gelein, R.; Silva, V.; Feikert, T.; Opanashuk, L.; Carter, J.; Potter, R.; Maynard, A.; Ito, Y.; Finkelstein, J.; et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 2006, 114, 1172–1178. [Google Scholar] [CrossRef]
- MacCalman, L.; Tran, C.L.; Kuempel, E. Development of a bio-mathematical model in rats to describe clearance, retention and translocation of inhaled nano particles throughout the body. J. Phys. Conf. Ser. 2009, 151, 012028. [Google Scholar] [CrossRef]
- Tremblay, R.T.; Kim, D.; Fisher, J.W. Determination of tissue to blood partition coefficients for nonvolatile herbicides, insecticides and fungicides using negligible depletion solid-phase microextraction (nd-SPME) and ultrafiltration. J. Toxicol. Environ. Health Part A 2012, 75, 288–298. [Google Scholar] [CrossRef]
- Parham, F.M.; Kohn, M.C.; Matthews, H.B.; Derosa, C.; Portier, C.J. Using structural information to create physiologically based pharmacokinetic models for all polychlorinated biphenyls: I. Tissue:Blood partition coefficients. Toxicol. Appl. Pharmacol. 1997, 144, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Peyret, T.; Poulin, P.; Krishnan, K. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals. Toxicol. Appl. Pharmacol. 2010, 249, 197–207. [Google Scholar] [CrossRef] [PubMed]
- ECETOC. The Role of Bioaccumulation in Environmental Risk Assessment: The Aquatic Environment and Related Food Webs; ECETOC: Brussels, Belgium, 1995. [Google Scholar]
- Praetorius, A.; Tufenkji, N.; Goss, K.-U.; Scheringer, M.; von der Kammer, F.; Elimelech, M. The road to nowhere: Equilibrium partition coefficients for nanoparticles. Environ. Sci. Nano 2014, 1, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Giri, J.; Diallo, M.S.; Iii, W.A.G.; Dalleska, N.F.; Fang, X.; Tang, Y. Partitioning of poly(amidoamine) dendrimers between n-octanol and water. Environ. Sci. Technol. 2009, 43, 5123–5129. [Google Scholar] [CrossRef] [Green Version]
- Hristovski, K.D.; Westerhoff, P.K.; Posner, J.D. Octanol-water distribution of engineered nanomaterials. J. Environ. Sci. Health Part A 2011, 46, 636–647. [Google Scholar] [CrossRef]
- Clewell, R.A.; Clewell, H.J. Development and specification of physiologically based pharmacokinetic models for use in risk assessment. Regul. Toxicol. Pharmacol. 2008, 50, 129–143. [Google Scholar] [CrossRef]
- Dell’Orco, D.; Lundqvist, M.; Oslakovic, C.; Cedervall, T.; Linse, S. Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS ONE 2010, 5, e10949. [Google Scholar] [CrossRef] [Green Version]
- Sahneh, F.D.; Scoglio, C.; Riviere, J. Dynamics of nanoparticle-protein corona complex formation: Analytical results from population balance equations. PLoS ONE 2013, 8, e64690. [Google Scholar] [CrossRef] [Green Version]
- Riviere, J.E.; Scoglio, C.; Sahneh, F.D.; Monteiro-Riviere, N.A. Computational approaches and metrics required for formulating biologically realistic nanomaterial pharmacokinetic models. Comput. Sci. Discov. 2013, 6, 014005. [Google Scholar] [CrossRef] [Green Version]
- Sadauskas, E.; Wallin, H.; Stoltenberg, M.; Vogel, U.; Doering, P.; Larsen, A.; Danscher, G. Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol. 2007, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015, 10, 487–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenger, Y.; Schneider, R.J., II; Reddy, G.R.; Kopelman, R.; Jolliet, O.; Philbert, M.A. Tissue distribution and pharmacokinetics of stable polyacrylamide nanoparticles following intravenous injection in the rat. Toxicol. Appl. Pharmacol. 2011, 251, 181–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiser, M. Update on macrophage clearance of inhaled micro- and nanoparticles. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G. Lung dosimetry: Pulmonary clearance of inhaled particles. Aerosol Sci. Technol. 1993, 18, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Wenger, Y.; Jolliet, O.; Schneider, R.; Philbert, M. A PBPK model to elucidate processes governing distribution and excretion of polyacrylamide nanoparticles. NSTI-Nanotech 2007, 2, 267–270. [Google Scholar]
- Harper, S.; Usenko, C.; Hutchison, J.E.; Maddux, B.L.S.; Tanguay, R.L. In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalization and route of exposure. J. Exp. Nanosci. 2008, 3, 195–206. [Google Scholar] [CrossRef]
- Yao, C.; Li, C.; Ding, L.; Fang, J.; Yuan, L.; Hu, X.; Wang, Y.; Wu, M. Effects of exposure routes on the bio-distribution and toxicity of titanium dioxide nanoparticles in mice. J. Nanosci. Nanotechnol. 2016, 16, 7110–7117. [Google Scholar] [CrossRef]
- Wang, B.; He, X.; Zhang, Z.; Zhao, Y.; Feng, W. Metabolism of nanomaterials in vivo: Blood circulation and organ clearance. Acc. Chem. Res. 2013, 46, 761–769. [Google Scholar] [CrossRef]
- Iwatsubo, T.; Hirota, N.; Ooie, T.; Suzuki, H.; Shimada, N.; Chiba, K.; Ishizaki, T.; Green, C.E.; Tyson, C.A.; Sugiyama, Y. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol. Ther. 1997, 73, 147–171. [Google Scholar] [CrossRef]
- Caira, M.R.; Ionescu, C. Drug Metabolism Current Concepts; Springer Science & Business Media: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Hoang, K. Physiologically based pharmacokinetic models: Mathematical fundamentals and simulation implementations. Toxicol. Lett. 1995, 79, 99–106. [Google Scholar] [CrossRef]
- Lipscomb, J.C.; Kedderis, G.L. Use of Physiologically Based Pharmacokinetic Models to Quantify the Impact of Human Age and Interindividual Differences in Physiology and Biochemistry Pertinent to Risk; US Environmental Protection Agency, Office of Research and Development, National Centre for Environmental Assessment: Cincinnati, OH, USA, 2006.
- Lunov, O.; Syrovets, T.; Röcker, C.; Tron, K.; Nienhaus, G.U.; Rasche, V.; Mailänder, V.; Landfester, K.; Simmet, T. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 2010, 31, 9015–9022. [Google Scholar] [CrossRef] [PubMed]
- Kreyling, W.G.; Abdelmonem, A.M.; Ali, Z.; Alves, F.; Geiser, M.; Haberl, N.; Hartmann, R.; Hirn, S.; de Aberasturi, D.J.; Kantner, K.; et al. In vivo integrity of polymer-coated gold nanoparticles. Nat. Nanotechnol. 2015, 10, 619–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utembe, W.; Wepener, V.; Yu, I.J.; Gulumian, M. An assessment of applicability of existing approaches to predicting the bioaccumulation of conventional substances in nanomaterials. Environ. Toxicol. Chem. 2018, 37, 2972–2988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keene, A.M.; Peters, D.; Rouse, R.; Stewart, S.; Rosen, E.T.; Tyner, K.M. Tissue and cellular distribution of gold nanoparticles varies based on aggregation/agglomeration status. Nanomedicine 2012, 7, 199–209. [Google Scholar] [CrossRef]
- Murray, A.R.; Kisin, E.R.; Tkach, A.V.; Yanamala, N.; Mercer, R.; Young, S.-H.; Fadeel, B.; Kagan, V.E.; Shvedova, A.A. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part. Fibre Toxicol. 2012, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Durantie, E.; Vanhecke, D.; Rodriguez-Lorenzo, L.; Delhaes, F.; Balog, S.; Septiadi, D.; Bourquin, J.; Petri-Fink, A.; Rothen-Rutishauser, B. Biodistribution of single and aggregated gold nanoparticles exposed to the human lung epithelial tissue barrier at the air-liquid interface. Part. Fibre Toxicol. 2017, 14, 49. [Google Scholar] [CrossRef] [Green Version]
- Qu, G.; Bai, Y.; Zhang, Y.; Jia, Q.; Zhang, W.; Yan, B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon 2009, 47, 2060–2069. [Google Scholar] [CrossRef]
- Hotze, E.M.; Phenrat, T.; Lowry, G.V. Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 2010, 39, 1909–1924. [Google Scholar] [CrossRef] [Green Version]
- Cho, W.-S.; Cho, M.; Jeong, J.; Choi, M.; Han, B.S.; Shin, H.-S.; Hong, J.; Chung, B.H.; Jeong, J.; Cho, M.-H. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 2010, 245, 116–123. [Google Scholar] [CrossRef]
- Avgoustakis, K.; Beletsi, A.; Panagi, Z.; Klepetsanis, P.; Livaniou, E.; Evangelatos, G.; Ithakissios, D.S. Effect of copolymer composition on the physicochemical characteristics, in vitro stability and biodistribution of PLGA-mPEG nanoparticles. Int. J. Pharm. 2003, 259, 115–127. [Google Scholar] [CrossRef]
- Fent, G.M.; Casteel, S.W.; Kim, D.Y.; Kannan, R.; Katti, K.; Chanda, N.; Katti, K. Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injection in juvenile swine. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, N.; Danno, N.; Ichinose, T.; Sasaki, T.; Fukui, H.; Honda, K.; Gamo, M. Tissue distribution and clearance of intravenously administered titanium dioxide (TiO2) nanoparticles. Nanotoxicology 2014, 8, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Lipka, J.; Semmler-Behnke, M.; Sperling, R.A.; Wenk, A.; Takenaka, S.; Schleh, C.; Kissel, T.; Parak, W.J.; Kreyling, W.G. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 2010, 31, 6574–6581. [Google Scholar] [CrossRef]
- Clewell, H.J., III; Lee, T.-S.; Carpenter, R.L. Sensitivity of physiologically based pharmacokinetic models to variation in model parameters: Methylene chloride. Risk Anal. 1994, 14, 521–531. [Google Scholar] [CrossRef]
- Barton, H.A.; Chiu, W.A.; Woodrow Setzer, R.; Andersen, M.E.; Bailer, A.J.; Bois, F.Y.; DeWoskin, R.S.; Hays, S.; Johanson, G.; Jones, N.; et al. Characterizing uncertainty and variability in physiologically based pharmacokinetic models: State of the science and needs for research and implementation. Toxicol. Sci. 2007, 99, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNally, K.; Cotton, R.; Loizou, G.D. A workflow for global sensitivity analysis of PBPK models. Front. Pharmacol. 2011, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, L.M.; MacCalman, L.; Haber, L.T.; Kuempel, E.D.; Tran, C.L. Bayesian evaluation of a physiologically-based pharmacokinetic (PBPK) model of long-term kinetics of metal nanoparticles in rats. Regul. Toxicol. Pharmacol. 2015, 73, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Peters, S.A.; Dolgos, H. Requirements to establishing confidence in physiologically based pharmacokinetic (PBPK) models and overcoming some of the challenges to meeting them. Clin. Pharmacokinet. 2019, 58, 1355–1371. [Google Scholar] [CrossRef] [Green Version]
- International Programme on Chemical, S.; Inter-Organization Programme for the Sound Management of, C. Characterization and Application of Physiologically Based Phamacokinetic Models in Risk Assessment; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Kuepfer, L.; Niederalt, C.; Wendl, T.; Schlender, J.F.; Willmann, S.; Lippert, J.; Block, M.; Eissing, T.; Teutonico, D. Applied concepts in PBPK modeling: How to build a PBPK/PD model. CPT Pharmacomet. Syst. Pharmacol. 2016, 5, 516–531. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Int. J. Nurs. Stud. 2010, 47, 931–936. [Google Scholar] [CrossRef]
- Saunders, L.J.; Russell, R.A.; Crabb, D.P. The coefficient of determination: What determines a useful R 2 statistic? Investig. Ophthalmol. Vis. Sci. 2012, 53, 6830–6832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Hu, J.; Wu, W.; Liu, S.; Li, M.; Yao, N.; Chen, J.; Ye, L.; Wang, Q.; Zhou, Y. Application of IEUBK model in lead risk assessment of children aged 61-84 months old in central China. Sci. Total Environ. 2016, 541, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Krishnan, K.; Peyret, T. Physiologically based toxicokinetic (PBTK) modeling in ecotoxicology. In Ecotoxicology Modeling, Emerging Topics in Ecotoxicology:Principles, Approaches and Perspectives; Devillers, J., Ed.; Springer Science & Business Media, LLC: Boston, MA, USA, 2009; Volume 2, pp. 145–175. [Google Scholar]
- Jean, J.; Kar, S.; Leszczynski, J. QSAR modeling of adipose/blood partition coefficients of Alcohols, PCBs, PBDEs, PCDDs and PAHs: A data gap filling approach. Environ. Int. 2018, 121, 1193–1203. [Google Scholar] [CrossRef]
- Chebekoue, S.F.; Krishnan, K. A framework for application of quantitative property-property relationships (QPPRs) in physiologically based pharmacokinetic (PBPK) models for high-throughput prediction of internal dose of inhaled organic chemicals. Chemosphere 2019, 215, 634–646. [Google Scholar] [CrossRef]
- Sarigiannis, D.; Papadaki, K.; Kontoroupis, P.; Karakitsios, S.P. Development of QSARs for parameterizing physiology based ToxicoKinetic models. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 106, 114–124. [Google Scholar] [CrossRef]
- Savvateeva, D.; Numata, J.; Pieper, R.; Schafft, H.; Lahrssen-Wiederholt, M.; Bulik, S. Physiologically based toxicokinetic models and in silico predicted partition coefficients to estimate tetrachlorodibenzo-p-dioxin transfer from feed into growing pigs. Arch. Toxicol. 2020, 94, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Price, E.; Gesquiere, A.J. An in vitro assay and artificial intelligence approach to determine rate constants of nanomaterial-cell interactions. Sci. Rep. 2019, 9, 13943. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.D.; Sach-Peltason, L.; Kramer, C.; Wang, K.; Ebeling, M. Multiscale modelling of drug mechanism and safety. Drug Discov. Today 2020, 25, 519–534. [Google Scholar] [CrossRef]
- Danhof, M. Kinetics of drug action in disease states: Towards physiology-based pharmacodynamic (PBPD) models. J. Pharmacokinet. Pharmacodyn. 2015, 42, 447–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, D.; Botelho, D.; Gow, A.J.; Zhang, J.; Georgopoulos, P.G. Computational multiscale toxicodynamic modeling of silver and carbon nanoparticle effects on mouse lung function. PLoS ONE 2013, 8, e80917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourmand, A.; Abdollahi, M. Current opinion on nanotoxicology. Daru J. Fac. Pharm. Tehran Univ. Med. Sci. 2012, 20, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warheit, D.B.; Webb, T.R.; Reed, K.L.; Frerichs, S.; Sayes, C.M. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 2007, 230, 90–104. [Google Scholar] [CrossRef]
- Tan, Y.-M.; Worley, R.R.; Leonard, J.A.; Fisher, J.W. Challenges associated with applying physiologically based pharmacokinetic modeling for public health decision-making. Toxicol. Sci. 2018, 162, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohal, I.S.; O’Fallon, K.S.; Gaines, P.; Demokritou, P.; Bello, D. Ingested engineered nanomaterials: State of science in nanotoxicity testing and future research needs. Part. Fibre Toxicol. 2018, 15, 29. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Poon, W.; Tavares, A.J.; McGilvray, I.D.; Chan, W.C.W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release Off. J. Control. Release Soc. 2016, 240, 332–348. [Google Scholar] [CrossRef]
- Studer, A.M.; Limbach, L.K.; Van Duc, L.; Krumeich, F.; Athanassiou, E.K.; Gerber, L.C.; Moch, H.; Stark, W.J. Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol. Lett. 2010, 197, 169–174. [Google Scholar] [CrossRef]
- Utembe, W.; Potgieter, K.; Stefaniak, A.B.; Gulumian, M. Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials. Part. Fibre Toxicol. 2015, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Chomenidis, C.; Drakakis, G.; Tsiliki, G.; Anagnostopoulou, E.; Valsamis, A.; Doganis, P.; Sopasakis, P.; Sarimveis, H. Jaqpot Quattro: A novel computational web platform for modeling and analysis in nanoinformatics. J. Chem. Inf. Model. 2017, 57, 2161–2172. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Jaberi-Douraki, M.; He, C.; Jin, S.; Yang, R.S.H.; Fisher, J.W.; Riviere, J.E. Performance assessment and translation of physiologically based pharmacokinetic models from acslX to Berkeley Madonna, MATLAB and R language: Oxytetracycline and gold nanoparticles as case examples. Toxicol. Sci. Off. J. Soc. Toxicol. 2017, 158, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Blancato, J.N.; Power, F.; Ruiz, A.; Tsang, A.; Okino, M.; Johnson, J.; Dary, C.; Heravi, N.; Brown, R.; Sheldon, L. Exposure Related Dose Estimating Model (ERDEM); U.S. Environmental Protection Agency: Washington, DC, USA, 2007.
- Chen, S. Physiologically-Based Pharmacokinetic (PBPK) Models for the Description of Sequential Metabolism of Codeine to Morphine and Morphine 3-Glucuronide (M3G) in Man and Rat; University of Toronto: Toronto, ON, Canada, 2010. [Google Scholar]
- Zhang, X.; Tsang, A.M.; Okino, M.S.; Power, F.W.; Knaak, J.B.; Harrison, L.S.; Dary, C.C. A physiologically based pharmacokinetic/pharmacodynamic model for carbofuran in Sprague-Dawley rats using the exposure-related dose estimating model. Toxicol. Sci. 2007, 100, 345–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Huang, D.; Liu, M.; Li, M. Internal exposure simulation based on exposure related dose estimating model. J. Risk Anal. Crisis Response 2013, 3, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Cahill, T.M.; Cousins, I.; Mackay, D. Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants. Environ. Toxicol. Chem. 2003, 22, 26–34. [Google Scholar] [CrossRef] [PubMed]
NM Type | NM Abbreviation | In vitro and/or In Vivo Model Used for PBPK Modelling | Route | Key Feature/Result | Model Validation | Reference |
---|---|---|---|---|---|---|
Bioconjugates, inorganic NPs and metal-oxide NPs | PAA, PEGylated and non-PEGylated (size not indicated) | Rat | Intravenous injection | Developed entirely from in vivo kinetic data | Validation not indicated | [110] |
31 nm PAA and PAA-PEG | Rat | Intravenous injection | Developed from in vivo kinetic data; did not include MPS as an organ | Validation not indicated | [107] | |
20, 31, 80, 114, 319 nm PEG-PAA, PAA, breviscapine-loaded poly(D, L-lactic acid) (BVP-PLA) | Rat | Intravenous injection | The model included MPS where all MPS had the same efficacy and saturation level, independent of their location | Predictions fitted the experimental data relatively well, with R2 values ranging from 0.707 to 0.994 | [34] | |
35 nm PEG-PAA | Rat | Intravenous injection | Diffusion-limited model, different MPS uptake capacities were used for each organ | Prediction valued matched measured data (R2 = 0.97) | [24] | |
35 nm PEG-Au | Mouse | Intravenous injection | Permeability-limited model preferred over flow-limited; included MPS | Model predictions compared very well with experimental data, within a factor of two | [14] | |
13–100 nm PEG- gum arabic or citrate-Au | Mouse, rat, pig and human | Intravenous injection | A permeability-limited model for several species using a general approach for endocytosis | Simulation results were within a factor of two of independent experimentaldata | [56] | |
100 nm Dexamethasone-encapsulated nanoparticles(Dex-NPs) | Mouse | Intravenous injection | Perfusion-limited model where absorption of the NMs in the organ was modeled via equilibrium partitioning | Simulation results were consistent with previously published in vivo data | [28] | |
13,15,20,40,80,100 nm Au-PEG | Miceand humans | Intravenous injection | The model explored extensively the role of endocytosis in PBPK using a set of equations | The model predicted NP distribution very well in both mice and humans | [16] | |
Molecular imaging NPs (MINPs) based on peptide nucleic acids (Size not indicated) | Mice | Intravenous injection | A permeability-limited model that did not include MPS | Model predictions compared well with experimental data | [27] | |
203 nm Nano SNX-2112 (anticancer agent) | Rat | Intravenous injection | Pharmacokinetic of the nanoform was similar to that of the nanoparticulate form due to rapid dissolution | Model predictions compared very well with experimental data | [26] | |
31 nm PEG-PAA, 31 nm uncoated PAA,13, 56 nm Au and 63 nm TiO2 | Rat | Intravenous injection | The model included the MPS, using both flow and permeability-limited processes | The model reported to explain 97% of the observed variation in biokinetics of PAA | [75] | |
Inorganic NPs | 18.5 nm QDs | Mouse | Intravenous injection | The model made use of time-dependent PCs | Model reported to have excellent predictive capability | [6] |
QDs (13 nm QD705, 12 nm QD525, 21 nm QD800, 37 nm QD621, 7–25 nm QD-LM, 80 nm QD-BSA) | Mice and Rats | Intravenous and intradermal injection | Perfusion-limited model, with fixed PCs and assuming no elimination or metabolism occurred in any tissues | The model could not adequately describe the complex biodistribution exhibited bydifferent QDs | [7] | |
3.5 nm QDs | Mouse | Intravenous injection | The model used permeability-limited processes using organ-specific PCs | Predicted data matched independent experimental data | [8] | |
15 to 20 nm Iridium and Ag | Rat | Endotracheal instillation and inhalation | Model included the lymph system and olfactory system. | Model not calibrated but calibration data fitted very well with experimental data, | [93] | |
20, 80 and 110 nm Ag | Rat | Intravenous injection | The model did not explicitly include dissolution of Ag | Model predictions compared very well with experimental data, within a factor of two | [10] | |
15–150 nm Ag | Rat and human | Dermal, oral and inhalation | The model combined ionic and nanoparticulate PBPK sub-models | Validated by comparing with experimental values | [11] | |
25 nm Au | Mouse | Intraperitoneal injection | The model included the MPS and the whole lymphatic system | Model predictions were within 1.48-fold of the observed values in all organs | [15] | |
2, 7, 18, 46 and 80 nm Au | In vitro alveolar epithelial cellular cultures | The ALI for PBPK modelling | Translocation kinetics of Au NPs across the lung epithelium determined using ALI | Translocation kinetics were adequately predicted for mice after inhalation exposure, while for rats after intratracheal instillation, the translocation was slightly overestimated | [83] | |
Metal-Oxide NPs | 10 nm and 71 nm ZnO | Mice | Intravenous, inhalation and oral exposure | Dissolution of ZnO was not specifically included. The model used time-dependent PCs | Simulation of ZnO NPs only fitted the experimental data after replacing PCs of ZnO NPs with those for Zn(NO3)2 | [23] |
25 and 90 nm CeO2 | Rats | Inhalation | The model used both flow- and permeability-limited processes using time-dependent PCs | The model successfully predicted the kinetics of CeO2 NPs | [21] | |
21 nm Superparamagnetic nanoparticles (SPIONs): magnetite (Fe3O4) and maghemite (γ-Fe2O3), SPIONs | Mice | intravenously in a single dose | Novel in vitro experimental data describing uptake of SPIONs in murine macrophage cell line and primary human monocyte-derived macrophages were integrated into this computational approach. | The PBPK model generated was compared against in vivo results and showed to be effective in the prediction of the SPION distribution. | [78] | |
20 nm TiO2 | Rats | Intravenous injection | The model used combined a PBPK model and a cell-response model to predict liver cell viability and cell death | Not validated | [18,20] | |
15–150 nm TiO2 | Human | Oral administration | Permeability-limited model that did included the MPS | Evaluated by comparing simulated organ levels to experimentally assessed organ levels of independent in vivo studies | [17] | |
25 nm TiO2 | Rats | Intravenous injection | Perfusion-limited model that did not include the MPS | The PBPK model was outperformed by a simple compartmentalmodel | [19] | |
5, 15, 30, 55 nm CeO2 with citrate coating | Humans | Intravenous injection, inhalation, intratracheal instillation and oral exposure | The model included the MPS, using both flow and permeability-limited processes | The model adequately described CeO2 biokinetics in various tissues for the 5 nm ceria as well as for the 30 nm ceria in liver and spleen | [22] | |
Carbon-based-NPs | 5–10 nm Radiolabeled CNTs | Humans | Inhalation | Developed from time-courses of radioactivity in various organs, with one common fixed PC | Prediction results were consistent with previously published in vivo data | [9] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utembe, W.; Clewell, H.; Sanabria, N.; Doganis, P.; Gulumian, M. Current Approaches and Techniques in Physiologically Based Pharmacokinetic (PBPK) Modelling of Nanomaterials. Nanomaterials 2020, 10, 1267. https://doi.org/10.3390/nano10071267
Utembe W, Clewell H, Sanabria N, Doganis P, Gulumian M. Current Approaches and Techniques in Physiologically Based Pharmacokinetic (PBPK) Modelling of Nanomaterials. Nanomaterials. 2020; 10(7):1267. https://doi.org/10.3390/nano10071267
Chicago/Turabian StyleUtembe, Wells, Harvey Clewell, Natasha Sanabria, Philip Doganis, and Mary Gulumian. 2020. "Current Approaches and Techniques in Physiologically Based Pharmacokinetic (PBPK) Modelling of Nanomaterials" Nanomaterials 10, no. 7: 1267. https://doi.org/10.3390/nano10071267
APA StyleUtembe, W., Clewell, H., Sanabria, N., Doganis, P., & Gulumian, M. (2020). Current Approaches and Techniques in Physiologically Based Pharmacokinetic (PBPK) Modelling of Nanomaterials. Nanomaterials, 10(7), 1267. https://doi.org/10.3390/nano10071267