ZnO Nano-Particles Production Intensification by Means of a Spinning Disk Reactor
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Influence of Reagents Flowrate and Reagent Injection Point Position
3.2. Influence of Disk Rotational Velocity and Reagent’s Concentration
3.3. Morphology of Obtained nZnO Particles
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Holec, D.; Dumitraschkewitz, P.; Vollath, D.; Fischer, F.D. Surface Energy of Au Nanoparticles Depending on Their Size and Shape. Nanomaterials 2020, 10, 484. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Fu, E.; Wang, Y.; Zhang, C. Fabbrication of Cu2ZnSnS4 (CZTS) Nanoparticle Inks for Growth of CZTS Films for Solar Cells. Nanomaterials 2019, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, H.; Zhang, Y.; Guan, X.; Zhang, Z.; Chen, D. Low-Power Flexible Organic Field-Effect Transistors with Solution-Processable Polymer-Ceramic Nanoparticle Composite Dielectrics. Nanomaterials 2020, 10, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinh, V.D.; Hung, L.X.; Di Palma, L.; Hanh, V.T.H.; Vilardi, G. Effect of Carbon Nanotubes and Carbon Nanotubes/Gold Nanoparticles Composite on the Photocatalytic Activity of TiO2 and TiO2-SiO2. Chem. Eng. Technol. 2018, 42, 308–315. [Google Scholar] [CrossRef]
- Palomo, J.; Filice, M. Biosynthesis of Metal Nanoparticles: Novel Efficient Heterogeneous Nanocatalysts. Nanomaterials 2016, 6, 84. [Google Scholar] [CrossRef] [Green Version]
- Bassano, C.; Deiana, P.; Vilardi, G.; Verdone, N. Modeling and economic evaluation of carbon capture and storage technologies integrated into synthetic natural gas and power-to-gas plants. Appl. Energy 2020, 263, 114590. [Google Scholar] [CrossRef]
- Sato, Y.; Ishihara, M.; Nakamura, S.; Fukuda, K.; Takayama, T.; Hiruma, S.; Murakami, K.; Fujita, M.; Yokoe, H. Preparation and Application of Bioshell Calcium Oxide (BiSCaO) Nanoparticle-Dispersions with Bactericidal Activity. Molecules 2019, 24, 3415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.; Du, Z.; Wang, P.; Guo, H.; Zhang, H.; Lei, X.; Ren, F. 2-Deoxyglucose-Modified Folate Derivative: Self-Assembling Nanoparticle Able to Load Cisplatin. Molecules 2019, 24, 1084. [Google Scholar] [CrossRef] [Green Version]
- Vilardi, G. P-aminophenol catalysed production on supported nano-magnetite particles in fixed-bed reactor: Kinetic modelling and scale-up. Chemosphere 2020, 250, 126237. [Google Scholar] [CrossRef]
- Stoller, M.; Di Palma, L.; Vuppala, S.; Verdone, N.; Vilardi, G. Process Intensification Techniques for the Production of Nano- and Submicronic Particles for Food and Medical Applications. Curr. Pharm. Des. 2018, 24, 2329–2338. [Google Scholar] [CrossRef]
- Kerssemakers, A.A.; Doménech, P.; Cassano, M.; Yamakawa, C.K.; Dragone, G.; Mussatto, S.I. Production of Itaconic Acid from Cellulose Pulp: Feedstock Feasibility and Process Strategies for an Efficient Microbial Performance. Energies 2020, 13, 1654. [Google Scholar] [CrossRef] [Green Version]
- Pignatello, R.; Impallomeni, G.; Cupri, S.; Puzzo, G.; Curcio, C.; Rizzo, M.; Guglielmino, S.; Ballistreri, A. Unsaturated Poly (Hydroxyalkanoates) for the Production of Nanoparticles and the Effect of Cross-Linking on Nanoparticle Features. Materials 2019, 12, 868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebremariam, S.N.; Hvoslef-Eide, T.; Terfa, M.T.; Marchetti, J.M. Techno-Economic Performance of Different Technological Based Bio-Refineries for Biofuel Production. Energies 2019, 12, 3916. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yue, X.; Yang, J.; Yang, Y.; Gu, H.; Peng, W. Catalytic Fast Pyrolysis of Forestry Wood Waste for Bio-Energy Recovery Using Nano-Catalysts. Energies 2019, 12, 3972. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.; Nobre, L.; Gomes, J.; Puna, J.; Quinta-Ferreira, R.; Bordado, J. Soybean Oil Transesterification for Biodiesel Production with Micro-Structured Calcium Oxide (CaO) from Natural Waste Materials as a Heterogeneous Catalyst. Energies 2019, 12, 4670. [Google Scholar] [CrossRef] [Green Version]
- Di Palma, L.; Medici, F.; Vilardi, G. Artificial aggregate from non metallic automotive shredder residue. Chem. Eng. Trans. 2015, 43, 1723–1728. [Google Scholar] [CrossRef]
- Ibrahim, E.; Zhang, M.; Zhang, Y.; Hossain, A.; Qiu, W.; Chen, Y.; Wang, Y.; Wu, W.; Sun, G.; Li, B. Green-Synthesization of Silver Nanoparticles Using Endophytic Bacteria Isolated from Garlic and Its Antifungal Activity against Wheat Fusarium Head Blight Pathogen Fusarium graminearum. Nanomaterials 2020, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Vilardi, G.; di Palma, L.; Verdone, N. A physical-based interpretation of mechanism and kinetics of Cr(VI) reduction in aqueous solution by zero-valent iron nanoparticles. Chemosphere 2019, 220, 590–599. [Google Scholar] [CrossRef]
- Vilardi, G. Mathematical modelling of simultaneous nitrate and dissolved oxygen reduction by Cu-nZVI using a bi-component shrinking core model. Powder Technol. 2018, 343, 613–618. [Google Scholar] [CrossRef]
- Vilardi, G. Bimetallic nZVI-induced chemical denitrification modelling using the shrinking core model. Chem. Eng. Trans. 2018, 70, 235–241. [Google Scholar]
- Chinh, V.D.; Broggi, A.; di Palma, L.; Scarsella, M.; Speranza, G.; Vilardi, G.; Thang, P.N. XPS Spectra Analysis of Ti2+, Ti3+Ions and Dye Photodegradation Evaluation of Titania-Silica Mixed Oxide Nanoparticles. J. Electron. Mater. 2017, 47, 2215–2224. [Google Scholar] [CrossRef]
- Vilardi, G.; di Palma, L.; Verdone, N. Competitive Reaction Modelling in Aqueous Systems: The Case of Contemporary Reduction of Dichromates and Nitrates by nZVI. Chem. Eng. Trans. 2017, 60, 175–180. [Google Scholar] [CrossRef]
- Muradova, G.G.; Gadjieva, S.R.; di Palma, L.; Vilardi, G. Nitrates Removal by Bimetallic Nanoparticles in Water. Chem. Eng. Trans. 2016, 47, 205–210. [Google Scholar] [CrossRef]
- Marchetti, A.; Stoller, M. On the Micromixing Behavior of a Spinning Disk Reactor for Metallic Cu Nanoparticles Production. Appl. Sci. 2019, 9, 3311. [Google Scholar] [CrossRef] [Green Version]
- Vilardi, G.; Verdone, N. Production of metallic iron nanoparticles in a baffled stirred tank reactor: Optimization via computational fluid dynamics simulation. Particuology 2019, in press. [Google Scholar] [CrossRef]
- Peng, C.; Tong, H.; Yuan, P.; Sun, L.; Jiang, L.; Shi, J. Aggregation, Sedimentation, and Dissolution of Copper Oxide Nanoparticles: Influence of Low-Molecular-Weight Organic Acids from Root Exudates. Nanomaterials 2019, 9, 841. [Google Scholar] [CrossRef] [Green Version]
- Vilardi, G.; Parisi, M.; Verdone, N. Simultaneous aggregation and oxidation of nZVI in Rushton equipped agitated vessel: Experimental and modelling. Powder Technol. 2019, 353, 238–246. [Google Scholar] [CrossRef]
- Yusof, N.A.A.; Zain, N.M.; Pauzi, N. Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int. J. Biol. Macromol. 2019, 124, 1132–1136. [Google Scholar] [CrossRef]
- Hight-Huf, N.; Kang, J.H.; Bisnoff, P.; Sundararajan, S.; Thompson, T.; Barnes, M.; Hayward, R.C.; Emrick, T. Polymer Zwitterions for Stabilization of CsPbBr3 Perovskite Nanoparticles and Nanocomposite Films. Angew. Chemie Int. Ed. 2020. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R.P.; ALOthman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A. review. J. King Saud Univ.Sci. 2019, 31, 257–269. [Google Scholar] [CrossRef]
- Kolodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [Green Version]
- Sass, B.; Tusche, C.; Felsch, W.; Quaas, N.; Weismann, A.; Wenderoth, M. Structural and electronic properties of epitaxial V2O3. J. Phys. Condens. Matter 2007, 77, 413101. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doǧan, S.; Avrutin, V.; Cho, S.J.; Morko, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 11. [Google Scholar] [CrossRef] [Green Version]
- Goncharuk, O.; Bogatyrov, V.; Kazakova, O.; Galaburda, M.; Oranska, O.; Skwarek, E.; Waniak-Nowicka, H.; Janusz, W.; Władysław, V. Silica-supported NixOy, ZnxOy and MnxOy nanocomposites: Physicochemical characteristics and interactions with water and n-decane. Bull. Mater. Sci. 2019, 42, 243. [Google Scholar] [CrossRef] [Green Version]
- Jośko, I.; Oleszczuk, P.; Skwarek, E. The bioavailability and toxicity of ZnO and Ni nanoparticles and their bulk counterparts in different sediments. J. Soils Sediments 2016, 16, 1798–1808. [Google Scholar] [CrossRef] [Green Version]
- Oleszczuk, P.; Jośko, I.; Skwarek, E. Surfactants decrease the toxicity of ZnO, TiO2 and Ni nanoparticles to Daphnia magna. Ecotoxicology 2015, 24, 1923–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilardi, G.; Stoller, M.; di Palma, L.; Boodhoo, K.; Verdone, N. Metallic iron nanoparticles intensified production by spinning disk reactor: Optimization and fluid dynamics modelling. Chem. Eng. Process Process Intensif. 2019, 146, 107683. [Google Scholar] [CrossRef] [Green Version]
- Cafiero, L.M.; Baffi, G.; Chianese, A.; Jachuck, R.J.J. Process intensification: Precipitation of barium sulfate using a spinning disk reactor. Ind. Eng. Chem. Res. 2002, 41, 5240–5246. [Google Scholar] [CrossRef]
- Moharir, R.G.; Gogate, P.R.; Rathod, V.K. Process intensification of synthesis of magnetite using spinning disc reactor. Can. J. Chem. Eng. 2012, 90, 996–1005. [Google Scholar] [CrossRef]
- Vilardi, G.; Stoller, M.; Verdone, N.; di Palma, L. Production of nano Zero Valent Iron particles by means of a spinning disk reactor. Chem. Eng. Trans. 2012, 57, 751–756. [Google Scholar] [CrossRef]
- Boodhoo, K.V.; Al-Hengari, S.R. Micromixing Characteristics in a Small-Scale Spinning Disk Reactor. Chem. Eng. Technol. 2012, 35, 1229–1237. [Google Scholar] [CrossRef]
- Tai, C.Y.; Wang, Y.-H.; Tai, C.-T.; Liu, H.-S. Preparation of Silver Nanoparticles Using a Spinning Disk Reactor in a Continuous Mode. Ind. Eng. Chem. Res. 2009, 48, 10104–10109. [Google Scholar] [CrossRef]
- Ahoba-Sam, C.; Boodhoo, K.; Olsbye, U.; Jens, K.-J. Tailoring Cu Nanoparticle Catalyst for Methanol Synthesis Using the Spinning Disk Reactor. Materials 2018, 11, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, C.Y.; Tai, C.T.; Chang, M.H.; Liu, H.S. Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Ind. Eng. Chem. Res. 2007, 46, 5536–5541. [Google Scholar] [CrossRef]
- Coulson, J.M.; Sinnott, R.K.; Richardson, J.F. Coulson and Richardson’s Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar] [CrossRef]
- Stoller, M.; Miranda, L.; Chianese, A. Optimal feed location in a spinning disc reactor for the production of Tio2 nanoparticles. Chem. Eng. Trans. 2009, 17, 993–998. [Google Scholar] [CrossRef]
- Liu, B.; Zeng, H.C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 2003, 125, 4430–4431. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.J.; Zhang, W.C.; Wu, X.L.; Xia, Y.; Huang, G.S.; Xu, L.L.; Shen, J.C.; Siu, G.G.; Chu, P.K. Hydrothermal self-assembling of ZnO nanorods into sphere-like superstructures and their optical characteristics. Appl. Surf. Sci. 2008, 255, 1982–1987. [Google Scholar] [CrossRef]
- Wirunmongkol, T.; Narongchai, O.; Pavasupree, S. Simple hydrothermal preparation of zinc oxide powders using thai autoclave unit. Energy Procedia 2013, 34, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Sue, K.; Kimura, K.; Yamamoto, M.; Arai, K. Rapid hydrothermal synthesis of ZnO nanorods without organics. Mater. LETT 2004, 58, 3350–3352. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Jiang, T.; Li, Y.; Ma, Q.; Han, J.; Chen, J.; Wang, J.; Wang, Y. Controllable preparation, growth mechanism and the properties research of ZnO nanocrystal. Superlattices Microstruct. 2014, 72, 91–101. [Google Scholar] [CrossRef]
- Choi, C.H.; Su, Y.W.; Chang, C.H. Effects of fluid flow on the growth and assembly of ZnO nanocrystals in a continuous flow microreactor. Cryst. Eng. Comm. 2013, 15, 3326–3333. [Google Scholar] [CrossRef]
- Yang, H.; Lee, J.S.; Bae, S.; Hwang, J.H. Density-controlled growth of ZnO nanorods using ZnO nanocrystals-embedded polymer composite. Curr. Appl. Phys. 2009, 9, 797–801. [Google Scholar] [CrossRef]
ID | QZn (L/min) | QKOH (L/min) | Zn(II) (M) | KOH (M) | ω (rpm) | ri (cm) |
---|---|---|---|---|---|---|
1 | 25 | 25 | 0.02 | 0.08 | 1400 | 1.5 |
2 | 50 | 50 | 0.02 | 0.08 | 1400 | 1.5 |
3 | 100 | 100 | 0.02 | 0.08 | 1400 | 1.5 |
4 | 25 | 25 | 0.02 | 0.08 | 1400 | 2 |
5 | 50 | 50 | 0.02 | 0.08 | 1400 | 2 |
6 | 100 | 100 | 0.02 | 0.08 | 1400 | 2 |
7 | 25 | 25 | 0.02 | 0.08 | 1400 | 2.5 |
8 | 50 | 50 | 0.02 | 0.08 | 1400 | 2.5 |
9 | 100 | 100 | 0.02 | 0.08 | 1400 | 2.5 |
10 | 25 | 25 | 0.02 | 0.08 | 1400 | 3 |
11 | 50 | 50 | 0.02 | 0.08 | 1400 | 3 |
12 | 100 | 100 | 0.02 | 0.08 | 1400 | 3 |
13 | 50 | 50 | 0.02 | 0.08 | 200 | 2.5 |
14 | 50 | 50 | 0.02 | 0.08 | 400 | 2.5 |
15 | 50 | 50 | 0.02 | 0.08 | 800 | 2.5 |
16 | 50 | 50 | 0.02 | 0.08 | 1200 | 2.5 |
17 | 50 | 50 | 0.2 | 0.8 | 1400 | 2.5 |
18 | 50 | 50 | 0.1 | 0.4 | 1400 | 2.5 |
19 | 50 | 50 | 0.05 | 0.2 | 1400 | 2.5 |
20 | 50 | 50 | 0.5 | 2 | 1400 | 2.5 |
21 | 50 | 50 | 1 | 4 | 1400 | 2.5 |
22 | 500 | 500 | 0.5 | 2 | 1400 | 2.5 |
23 | 500 | 500 | 0.75 | 3 | 1400 | 2.5 |
24 | 500 | 500 | 1 | 4 | 1400 | 2.5 |
25 | 500 | 500 | 2 | 8 | 1400 | 2.5 |
ID | QZn (L/min) | QKOH (L/min) | Zn(II) (M) | KOH (M) | w (rpm) | ri (cm) | d (nm) | Yield | P (kg/d) | PSD 1 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 25 | 25 | 0.02 | 0.08 | 1400 | 1.5 | 84.2 | 0.961 | 0.113 | Unimodal |
2 | 50 | 50 | 0.02 | 0.08 | 1400 | 1.5 | 67.1 | 0.956 | 0.224 | Unimodal |
3 | 100 | 100 | 0.02 | 0.08 | 1400 | 1.5 | 74.3 | 0.949 | 0.445 | Unimodal |
4 | 25 | 25 | 0.02 | 0.08 | 1400 | 2 | 81.3 | 0.980 | 0.115 | Unimodal |
5 | 50 | 50 | 0.02 | 0.08 | 1400 | 2 | 64.1 | 0.972 | 0.228 | Unimodal |
6 | 100 | 100 | 0.02 | 0.08 | 1400 | 2 | 69.5 | 0.966 | 0.453 | Unimodal |
7 | 25 | 25 | 0.02 | 0.08 | 1400 | 2.5 | 69.1 | 0.982 | 0.116 | Unimodal |
8 | 50 | 50 | 0.02 | 0.08 | 1400 | 2.5 | 50.3 | 0.979 | 0.229 | Unimodal |
9 | 100 | 100 | 0.02 | 0.08 | 1400 | 2.5 | 55.7 | 0.968 | 0.454 | Unimodal |
10 | 25 | 25 | 0.02 | 0.08 | 1400 | 3 | 76.4 | 0.961 | 0.116 | Unimodal |
11 | 50 | 50 | 0.02 | 0.08 | 1400 | 3 | 59.4 | 0.956 | 0.230 | Unimodal |
12 | 100 | 100 | 0.02 | 0.08 | 1400 | 3 | 63.7 | 0.952 | 0.456 | Unimodal |
ID | QZn (L/min) | QKOH (L/min) | Zn(II) (M) | KOH (M) | w (rpm) | ri (cm) | d (nm) | Yield | P (kg/d) | PSD 1 |
---|---|---|---|---|---|---|---|---|---|---|
13 | 50 | 50 | 0.02 | 0.08 | 200 | 2.5 | 68.4 | 0.979 | 0.23 | Bimodal |
14 | 50 | 50 | 0.02 | 0.08 | 400 | 2.5 | 62.4 | 0.979 | 0.23 | Bimodal |
15 | 50 | 50 | 0.02 | 0.08 | 800 | 2.5 | 58.5 | 0.985 | 0.23 | Bimodal |
16 | 50 | 50 | 0.02 | 0.08 | 1200 | 2.5 | 54.1 | 0.992 | 0.23 | Unimodal |
17 | 50 | 50 | 0.2 | 0.8 | 1400 | 2.5 | 54.2 | 0.992 | 2.32 | Unimodal |
18 | 50 | 50 | 0.1 | 0.4 | 1400 | 2.5 | 53.1 | 0.991 | 1.16 | Unimodal |
19 | 50 | 50 | 0.05 | 0.2 | 1400 | 2.5 | 50.9 | 0.993 | 0.58 | Unimodal |
20 | 50 | 50 | 0.5 | 2 | 1400 | 2.5 | 55.6 | 0.991 | 5.81 | Unimodal |
21 | 50 | 50 | 1 | 4 | 1400 | 2.5 | 60.4 | 0.991 | 11.60 | Bimodal |
22 | 500 | 500 | 0.5 | 2 | 1400 | 2.5 | 56.1 | 0.983 | 57.60 | Unimodal |
23 | 500 | 500 | 0.75 | 3 | 1400 | 2.5 | 59.4 | 0.981 | 86.22 | Unimodal |
24 | 500 | 500 | 1 | 4 | 1400 | 2.5 | 62.3 | 0.982 | 115.08 | Bimodal |
25 | 500 | 500 | 2 | 8 | 1400 | 2.5 | 64.7 | 0.983 | 230.39 | Bimodal |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoller, M.; Ochando-Pulido, J.M. ZnO Nano-Particles Production Intensification by Means of a Spinning Disk Reactor. Nanomaterials 2020, 10, 1321. https://doi.org/10.3390/nano10071321
Stoller M, Ochando-Pulido JM. ZnO Nano-Particles Production Intensification by Means of a Spinning Disk Reactor. Nanomaterials. 2020; 10(7):1321. https://doi.org/10.3390/nano10071321
Chicago/Turabian StyleStoller, Marco, and Javier Miguel Ochando-Pulido. 2020. "ZnO Nano-Particles Production Intensification by Means of a Spinning Disk Reactor" Nanomaterials 10, no. 7: 1321. https://doi.org/10.3390/nano10071321
APA StyleStoller, M., & Ochando-Pulido, J. M. (2020). ZnO Nano-Particles Production Intensification by Means of a Spinning Disk Reactor. Nanomaterials, 10(7), 1321. https://doi.org/10.3390/nano10071321