Structure, Morphology, and Photoelectric Performances of Te-Sb2Se3 Thin Film Prepared via Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Te-Sb2Se3 Target
2.2. Deposition of the Te-Sb2Se3 Thin Films
2.3. Characterization
3. Results and Discussion
3.1. Target Characterization
3.2. Characterization on the Structure of Te-Sb2Se3 Thin Films
3.3. Optical Properties of Te-Sb2Se3 Thin Films
3.4. Photoelectric Performances of Te-Sb2Se3 Thin Films
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Photovoltaics Report. 2020. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 23 April 2020).
- Lei, H.; Chen, J.; Tan, Z.; Fang, G. Review of recent progress in antimony chalcogenide-based solar cells: Materials and devices. Sol. RRL 2019, 3, 1900026. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, C.; Wu, C.; Ju, H.; Jiang, G.; Liu, W.; Zhu, C.; Chen, T. V2O5 as hole transporting material for efficient all inorganic Sb2S3 solar cells. ACS Appl. Mater. Interfaces 2018, 10, 27098–27105. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xiong, W.; Liang, G.; Liu, Y.; Yang, H.; Zheng, Z.; Zhang, X.; Fan, P.; Chen, S. Fabrication of Sb2S3 thin films by magnetron sputtering and post-sulfurization/selenization for substrate structured solar cells. J. Alloys Compd. 2020, 826, 154235. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Luo, M.; Leng, M.; Xia, Z.; Zhou, Y.; Qin, S.; Xue, D.J.; Lv, L.; Huang, H.; et al. Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl. Mater. Interfaces 2014, 6, 10687–10695. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Y.; Luo, J.; Li, D.; Liu, X.; Chen, C.; Song, H.; Ma, J.; Xue, D.-J.; Yang, B.; et al. Buried homojunction in CdS/Sb2Se3 thin film photovoltaics generated by interfacial diffusion. Appl. Phys. Lett. 2017, 111, 013901. [Google Scholar] [CrossRef]
- Ma, C.; Guo, H.; Wang, X.; Chen, Z.; Cang, Q.; Jia, X.; Li, Y.; Yuan, N.; Ding, J. Fabrication of Sb2Se3 thin film solar cells by co-sputtering of Sb2Se3 and Se targets. Sol. Energy 2019, 193, 275–282. [Google Scholar] [CrossRef]
- Li, Z.; Liang, X.; Li, G.; Liu, H.; Zhang, H.; Guo, J.; Chen, J.; Shen, K.; San, X.; Yu, W.; et al. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Chen, X.; Luo, Y.; Chen, Z.; Liu, Y.; Li, Y.; Su, Z.; Zhang, X.; Fan, P.; Liang, G. Controlled sputtering pressure on high-quality Sb2Se3 thin film for substrate configurated solar cells. Nanomaterials 2020, 10, 574. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Bobela, D.C.; Yang, Y.; Lu, S.; Zeng, K.; Ge, C.; Yang, B.; Gao, L.; Zhao, Y.; Beard, M.C.; et al. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 2017, 10, 18–30. [Google Scholar] [CrossRef]
- Ren, D.; Merdrignac-Conanec, O.; Dorcet, V.; Cathelinaud, M.; Zheng, Z.; Ma, H.; Zhang, X. In situ synthesis and improved photoelectric performances of a Sb2Se3/β-In2Se3 heterojunction composite with potential photocatalytic activity for methyl orange degradation. Ceram. Int. 2020. [Google Scholar] [CrossRef]
- Huang, M.; Xu, P.; Han, D.; Tang, J.; Chen, S. Complicated and unconventional defect properties of the quasi-one-dimensional photovoltaic semiconductor Sb2Se3. ACS Appl. Mater. Interfaces 2019, 11, 15564–15572. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Zheng, Z.H.; Su, Z.H.; Li, X.J.; Wei, Y.D.; Zhang, X.H.; Fu, Y.Q.; Luo, J.T.; Fan, P.; Liang, G.X. Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film. Nano Energy 2019, 64, 103929. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, X.; Yang, Y.; Xue, D.-J.; Li, D.-B.; Chen, C.; Lu, S.; Gao, L.; He, Y.; Beard, M.C.; et al. Enhanced Sb2Se3 solar cell performance through theory-guided defect control. Prog. Photovolt. Res. Appl. 2017, 25, 861–870. [Google Scholar] [CrossRef]
- Tao, J.; Hu, X.; Guo, Y.; Hong, J.; Li, K.; Jiang, J.; Chen, S.; Jing, C.; Yue, F.; Yang, P.; et al. Solution-processed SnO2 interfacial layer for highly efficient Sb2Se3 thin film solar cells. Nano Energy 2019, 60, 802–809. [Google Scholar] [CrossRef]
- Chen, S.; Qiao, X.; Zheng, Z.; Cathelinaud, M.; Ma, H.; Fan, X.; Zhang, X. Enhanced electrical conductivity and photoconductive properties of Sn-doped Sb2Se3 crystals. J. Mater. Chem. C 2018, 6, 6465–6470. [Google Scholar] [CrossRef]
- Zhou, Y.; Leng, M.; Xia, Z.; Zhong, J.; Song, H.; Liu, X.; Yang, B.; Zhang, J.; Chen, J.; Zhou, K.; et al. Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 2014, 4, 1301846. [Google Scholar] [CrossRef]
- Li, K.; Chen, C.; Lu, S.; Wang, C.; Wnag, S.; Lu, Y.; Tang, J. Orientation engineering in low-dimensional crystal-structural materials via seed screening. Adv. Mater. 2019, 31, 1903914. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, L.; Liu, W.; Zhu, C. Rapid thermal process to fabricate Sb2Se3 thin film for solar cell application. Sol. Energy 2016, 137, 256–260. [Google Scholar] [CrossRef]
- Liang, G.-X.; Zheng, Z.-H.; Fan, P.; Luo, J.-T.; Hu, J.-G.; Zhang, X.-H.; Ma, H.-L.; Fan, B.; Luo, Z.-K.; Zhang, D.-P. Thermally induced structural evolution and performance of Sb2Se3 films and nanorods prepared by an easy sputtering method. Sol. Energy Mater. Sol. Cells 2018, 174, 263–270. [Google Scholar] [CrossRef]
- Luo, Y.-D.; Tang, R.; Chen, S.; Hu, J.-G.; Liu, Y.-K.; Li, Y.-F.; Liu, X.-S.; Zheng, Z.-H.; Su, Z.-H.; Ma, X.-F.; et al. An effective combination reaction involved with sputtered and selenized Sb precursors for efficient Sb2Se3 thin film solar cells. Chem. Eng. J. 2020, 393, 124599. [Google Scholar] [CrossRef]
- Liang, G.-X.; Luo, Y.-D.; Chen, S.; Tang, R.; Zheng, Z.-H.; Li, X.-J.; Liu, X.-S.; Liu, Y.-K.; Li, Y.-F.; Chen, X.-Y.; et al. Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV. Nano Energy 2020, 73, 104806. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, B.; Lian, W.; Wu, C.; Wang, X.; Ju, H.; Zhu, C.; Fan, F.; Chen, T. Efficient Defect Passivation of Sb2Se3 Film by Tellurium Doping for High Performance Solar Cells. J. Mater. Chem. A 2020, 8, 6510–6516. [Google Scholar] [CrossRef]
- Said, S.M.; Bashir, M.B.A.; Sabri, M.F.M.; Miyazaki, Y.; Shnawah, D.A.A.; Hakeem, A.S.; Shimada, M.; Bakare, A.I.; Ghazali, N.N.N.; Elsheikh, M.H. Enhancement of thermoelectric behavior of La0.5Co4Sb12−xTex skutterudite materials. Metall. Mater. Trans. A 2017, 48, 3073–3081. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Luo, J.; Chen, W.; Yang, B.; Wen, X.; Lu, S.; Chen, C.; Zeng, K.; Song, H.; et al. The effect of sodium on antimony selenide thin film solar cells. RSC Adv. 2016, 6, 87288–87293. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, Z.; Cathelinaud, M.; Ma, H.; Qiao, X.; Su, Z.; Fan, P.; Liang, G.; Fan, X.; Zhang, X. Magnetron sputtered Sb2Se3-based thin films towards high performance quasi-homojunction thin film solar cells. Sol. Energy Mater. Sol. Cells 2019, 203, 110154. [Google Scholar] [CrossRef]
- Ren, D.; Chen, S.; Cathelinaud, M.; Liang, G.-X.; Ma, H.; Zhang, X. Fundamental physical characterization of Sb2Se3-based quasi-homojunction thin film solar cells. ACS Appl. Mater. Interfaces 2020, 12, 30572–30583. [Google Scholar] [CrossRef]
- Ren, D.; Zheng, Z.; Wei, M.; Zhang, P.; Cathelinaud, M.; Ma, H.; Zhang, X. Synthesis, structure and photoelectric properties of selenide composites with in situ constructed Sb2Se3/NaSbSe2 heterojunction. J. Eur. Ceram. Soc. 2020, 40, 4517–4526. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Chen, S.; Qin, S.; Liu, X.; Chen, J.; Xue, D.J.; Luo, M.; Cao, Y.; Cheng, Y.; et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 2015, 9, 409–415. [Google Scholar] [CrossRef]
- Liang, G.; Chen, X.; Tang, R.; Liu, Y.; Li, Y.; Luo, P.; Su, Z.; Zhang, X.; Fan, P.; Chen, S. Spark plasma sintering of Sb2Se3 sputtering target towards highly efficient thin film solar cells. Sol. Energy Mater. Sol. Cells 2020, 211, 110530. [Google Scholar] [CrossRef]
- Ren, D.; Deng, Q.; Wang, J.; Li, Y.; Li, M.; Ran, S.; Du, S.; Huang, Q. Densification and mechanical properties of pulsed electric current sintered B4C with in situ synthesized Al3BC obtained by the molten-salt method. J. Eur. Ceram. Soc. 2017, 37, 4524–4531. [Google Scholar] [CrossRef]
- Ren, D.; Deng, Q.; Wang, J.; Yang, J.; Li, Y.; Shao, J.; Li, M.; Zhou, J.; Ran, S.; Du, S.; et al. Synthesis and properties of conductive B4C ceramic composites with TiB2 grain network. J. Am. Ceram. Soc. 2018, 101, 3780–3786. [Google Scholar] [CrossRef]
- Wang, J.; Ren, D.; Chen, L.; Man, G.; Zhang, H.; Zhang, H.; Luo, L.; Li, W.; Pan, Y.; Gao, P.; et al. Initial investigation of B4C–TiB2 composites as neutron absorption material for nuclear reactors. J. Nucl. Mater. 2020, 539, 152275. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, Z.; Zhao, Y.; Zhang, Y.; Tan, T.; Yin, F. Facile spray drying approach to synthesize Sb2Se3/rGO composite anode for lithium-ion battery. J. Nanoparticle Res. 2019, 21, 15. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kumazawa, T.; Kao, Z.J.L.; Nakada, T. Cu(In,Ga)Se2 thin film solar cells with a combined ALD-Zn(O,S) buffer and MOCVD-ZnO:B window layers. Sol. Energy Mater. Sol. Cells 2013, 119, 129–133. [Google Scholar] [CrossRef]
- Chen, C.; Li, W.; Zhou, Y.; Chen, C.; Luo, M.; Liu, X.; Zeng, K.; Yang, B.; Zhang, C.; Han, J.; et al. Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Appl. Phys. Lett. 2015, 107, 043905. [Google Scholar] [CrossRef]
- Walsh, A.; Da Silva, J.L.F.; Wei, S.H. Origins of band-gap renormalization in degenerately doped semiconductors. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 075211. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, Z.M.; LaLonde, A.; Snyder, G.J. Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New J. Phys. 2013, 15, 075020. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-Q.; Zhang, M.; Wang, F.-X.; Pan, G.-B. Facile microwave-assisted synthesis of uniform Sb2Se3 nanowires for high performance photodetectors. J. Mater. Chem. C 2014, 2, 240–244. [Google Scholar] [CrossRef]
- Zhai, T.; Ye, M.; Li, L.; Fang, X.; Liao, M.; Li, Y.; Koide, Y.; Bando, Y.; Golberg, D. Single-crystalline Sb2Se3 nanowires for high-performance field emitters and photodetectors. Adv. Mater. 2010, 22, 4530–4533. [Google Scholar] [CrossRef]
Element | Sb | Se | Te |
---|---|---|---|
Atomic percent (at.%) | 39.78 ± 0.28 | 58.2 ± 0.17 | 2.02 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, D.; Luo, X.; Chen, S.; Zheng, Z.; Cathelinaud, M.; Liang, G.; Ma, H.; Qiao, X.; Fan, X.; Zhang, X. Structure, Morphology, and Photoelectric Performances of Te-Sb2Se3 Thin Film Prepared via Magnetron Sputtering. Nanomaterials 2020, 10, 1358. https://doi.org/10.3390/nano10071358
Ren D, Luo X, Chen S, Zheng Z, Cathelinaud M, Liang G, Ma H, Qiao X, Fan X, Zhang X. Structure, Morphology, and Photoelectric Performances of Te-Sb2Se3 Thin Film Prepared via Magnetron Sputtering. Nanomaterials. 2020; 10(7):1358. https://doi.org/10.3390/nano10071358
Chicago/Turabian StyleRen, Donglou, Xue Luo, Shuo Chen, Zhuanghao Zheng, Michel Cathelinaud, Guangxing Liang, Hongli Ma, Xvsheng Qiao, Xianping Fan, and Xianghua Zhang. 2020. "Structure, Morphology, and Photoelectric Performances of Te-Sb2Se3 Thin Film Prepared via Magnetron Sputtering" Nanomaterials 10, no. 7: 1358. https://doi.org/10.3390/nano10071358
APA StyleRen, D., Luo, X., Chen, S., Zheng, Z., Cathelinaud, M., Liang, G., Ma, H., Qiao, X., Fan, X., & Zhang, X. (2020). Structure, Morphology, and Photoelectric Performances of Te-Sb2Se3 Thin Film Prepared via Magnetron Sputtering. Nanomaterials, 10(7), 1358. https://doi.org/10.3390/nano10071358