Sustainable Biomass Activated Carbons as Electrodes for Battery and Supercapacitors—A Mini-Review
Abstract
:1. Introduction
2. Energy Storage Devices (Battery and Supercapacitors)
3. Biomass Carbon Sources and Composition as Raw Material for Carbon Electrodes (CEs)
4. Thermal Process for Carbon Electrodes Preparation and Heating Process Considerations
5. Preparation of ACs Through the Chemical Activation Process
5.1. Effect of the Physical Characteristics of Biomass Carbon Electrodes for Lithium-Ion Battery (LIBs)
5.2. Biomass Carbon Electrodes for Double Layer Supercapacitors (DLCs)
5.3. Effect of Functional Groups on Electrochemical Performances of the CEs
5.4. Biomass Carbon Electrodes for Pseudo-Capacitance/ EDLC Hybrid Devices (HSCs)
6. Future Perspectives and Current Challenges
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shahabuddin, M.; Krishna, B.B.; Bhaskar, T.; Perkins, G. Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses. Bioresour. Technol. 2020, 299, 122557. [Google Scholar] [CrossRef] [PubMed]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Woerden, V.F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. International Bank for Reconstruction and Development; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Cagnon, B.; Py, X.; Guillot, A.; Stoeckli, F.; Chambat, G. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour. Technol. 2009, 100, 292–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, H.; Reinoso, F.R. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sustain. Energy Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Q.; Gao, S.; Tang, G.; Liu, K.; He, S.; Huang, C. Biomass-derived carbon as binder-free electrode materials for supercapacitors. Carbon 2019, 155, 706–726. [Google Scholar] [CrossRef]
- Kostoglou, N.; Koczwara, C.; Prehal, C.; Terziyska, V.; Babic, B.; Matovic, B.; Constantinides, G.; Tampaxis, C.; Charalambopoulou, G.; Steriotis, T.; et al. Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage. Nano Energy 2017, 40, 49–64. [Google Scholar] [CrossRef]
- Niu, J.; Shao, R.; Liang, J.; Dou, M.; Li, Z.; Huang, Y.; Wang, F. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high-performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy 2017, 36, 322–330. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Srimuk, P.; Fleischmann, S.; Su, X.; Hatton, T.A.; Presser, V. Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice. Progress Mat. Sci. 2019, 101, 46–89. [Google Scholar] [CrossRef]
- Miller, J.R.; Burke, A.F. Electrochemical capacitors: Challenges and opportunities for real-world applications. Electrochem. Soc. Interface 2008, 17, 53. [Google Scholar]
- Conway, B.E.; Pell, W.G.; Liu, T.C. Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J. Power Sources 1997, 65, 53–59. [Google Scholar] [CrossRef]
- Zhou, G.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338. [Google Scholar] [CrossRef]
- Larcher, D.; Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef]
- Nie, Y.F.; Wang, Q.; Yi, H.T.; Chen, X.Y.; Zhang, Z.J. Remarkable capacitive enhancement of templated carbon materials by the redox additive electrolyte of p-phenylenediamine. RSC Adv. 2015, 5, 65100–65109. [Google Scholar] [CrossRef]
- Xu, D.; Hu, W.; Sun, X.N.; Cui, P.; Chen, X.Y. Redox additives of Na2MoO4 and KI: Synergistic effect and the improved capacitive performances for carbon-based supercapacitors. J. Power Sources 2017, 341, 448–456. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Li, Z.; Ma, Y.; Ma, L. Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 2020, 451, 227794. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Cui, G.; Chen, L. Biomass-derived materials for electrochemical energy storages. Prog. Polym. Sci. 2015, 43, 136–164. [Google Scholar] [CrossRef]
- Rana, A.; Baig, N.; Saleh, T.A. Electrochemically pretreated carbon electrodes and their electroanalytical applications–A review. J. Electroanal. Chem. 2019, 833, 313–332. [Google Scholar] [CrossRef]
- Tojo, T.; Sakurai, K.; Muramatsu, H.; Hayashi, T.; Yang, K.S.; Jung, Y.C.; Yang, C.M.; Endo, M.; Kim, Y.A. Electrochemical role of oxygen-containing functional groups on activated carbon electrode. RSC Adv. 2014, 4, 62678–62683. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Liu, J. Biomass-derived porous carbon materials for advanced lithium-sulfur batteries. J. Energy Chem. 2019, 34, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Alcaraz-Espinoza, J.J.; de Oliveira, H.P. Flexible supercapacitors based on a ternary composite of polyaniline/ polypyrrole/graphite on gold-coated sandpaper. Electrochim. Acta 2018, 274, 200–207. [Google Scholar] [CrossRef]
- Lima, R.M.A.P.; Alcaraz-Espinoza, J.J.; da Silva, F.A.G., Jr.; de Oliveira, H.P. Multifunctional wearable electronic textiles using cotton fibers with polypyrrole and carbon nanotubes. ACS Appl. Mater. Interfaces 2018, 10, 13783–13795. [Google Scholar] [CrossRef]
- Alcaraz-Espinoza, J.J.; de Melo, C.P.; de Oliveira, H.P. Fabrication of highly flexible hierarchical polypyrrole/carbon nanotube on eggshell membranes for supercapacitors. ACS Omega 2017, 2, 2866–2877. [Google Scholar] [CrossRef] [PubMed]
- Hoheisel, T.N.; Schrettl, S.; Szilluweit, R.; Frauenrath, H. Nanostructured carbonaceous materials from molecular precursors. Angew. Chem. Int. Ed. 2010, 49, 6496–6515. [Google Scholar] [CrossRef] [PubMed]
- Nagel, B.; Dellweg, H.; Gierasch, L.M. Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992). Pure Appl. Chem. 1992, 64, 143–168. [Google Scholar] [CrossRef] [Green Version]
- Umpierres, C.S.; Thue, P.S.; Reis, G.S.d.; de Brum, I.A.S.; Lima, E.C.; de Alencar, W.A.; Dias, S.L.P.; Dotto, G.L. Microwave activated carbons from Tucumã (Astrocaryum aculeatum) waste for efficient removal of 2- nitrophenol from aqueous solutions. Environ. Technol. 2018, 39, 1173–1187. [Google Scholar] [CrossRef]
- Leite, A.B.; Saucier, C.; Lima, E.C.; dos Reis, G.S.; Umpierres, C.S.; Mello, B.L.; Shirmardi, M.; Dias, S.L.P.; Sampaio, C.H. Activated carbons from avocado seed: Optimisation and application for removal several emerging organic compounds. Environ. Sci. Pollut. Res. 2018, 25, 7647–7661. [Google Scholar] [CrossRef] [Green Version]
- Cunha, M.R.; Lima, E.C.; Cimirro, N.F.G.M.; Thue, P.S.; Dias, S.L.P.; Gelesky, M.A.; Dotto, G.L.; Reis, G.S.d.; Pavan, F.A. Conversion of Eragrostis plana Nees leaves to activated carbon by microwave-assisted pyrolysis for the removal of organic emerging contaminants from aqueous solutions. Environ. Sci. Pollut. Res. 2018, 25, 23315–23327. [Google Scholar] [CrossRef] [Green Version]
- Kasperiski, F.M.; Lima, E.C.; Umpierres, C.S.; Reis, G.S.d.; Thue, P.S.; Lima, D.R.; Dias, S.L.P.; Saucier, C.; da Costa, J.B. Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions. J. Clean. Prod. 2018, 197, 919–929. [Google Scholar] [CrossRef]
- Thangavel, R.; Kannan, A.G.; Ponraj, R.; Kaliyappan, K.; Yoon, W.S.; Kim, D.W.; Lee, Y.S. Cinnamon-Derived Hierarchically Porous Carbon as an Effective Lithium Polysulfide Reservoir in Lithium–Sulfur Batteries. Nanomaterials 2020, 10, 1220. [Google Scholar] [CrossRef]
- Abioye, A.M.; Ani, F.N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renew. Sustain. Energy Rev. 2015, 52, 1282–1293. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Zu, G.; Shen, J.; Zou, L.; Wang, F.; Wang, X.; Zhang, Y.; Yao, X. Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 2016, 99, 203–211. [Google Scholar] [CrossRef]
- Shan, D.; Yang, J.; Liu, W.; Yan, J.; Fan, Z. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. J. Mater. Chem. 2016, 4, 13589–13602. [Google Scholar] [CrossRef]
- Gupta, V.K.; Carrott, P.J.M.; Singh, R.; Chaudhary, M.; Kushwaha, S. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresour. Technol. 2016, 216, 1066–1076. [Google Scholar]
- Xue, Y.; Du, C.; Wu, Z.; Zhang, L. Relationship of cellulose and lignin contents in biomass to the structure and RB-19 adsorption behavior of activated carbon. New J. Chem. 2018, 42, 16493–16502. [Google Scholar] [CrossRef]
- Zhuo, H.; Hu, Y.; Tong, X.; Zhong, L.; Peng, X.; Sun, R. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind. Crop. Prod. 2016, 87, 229–235. [Google Scholar] [CrossRef]
- Tian, X.; Zhu, S.; Peng, J.; Zuo, Y.; Wang, G.; Guo, X.; Zhao, N.; Ma, Y.; Ma, L. Synthesis of micro- and mesoporous carbon derived from cellulose as an electrode material for supercapacitors. Electrochim. Acta 2017, 241, 170–178. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Z.; Li, Z.; Wang, W.; Zhang, H. Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors. RSC Adv. 2017, 7, 12089–12097. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Lin, H.; Lin, Z.; Yin, J.; Lu, H.; Liu, D.; Zhao, M. 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method. ChemSusChem 2015, 8, 2114–2122. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, R.; Li, M.; Zhao, Z. Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications. Ind. Crop. Prod. 2015, 65, 216–226. [Google Scholar] [CrossRef]
- Reis, G.S.D.; Wilhelm, M.; Silva, T.C.A.; Rezwan, K.; Sampaio, C.H.; Lima, E.C.; Souza, S.M.A.G.U. The use of design of experiments for the evaluation of the production of surface rich activated carbon from sewage sludge via microwave and conventional pyrolysis. Appl. Thermal Eng. 2016, 93, 590. [Google Scholar] [CrossRef]
- Ao, W.; Fu, J.; Mao, X.; Kang, Q.; Ran, C.; Liu, Y.; Zhang, H.; Gao, Z.; Li, J.; Liu, G.; et al. Microwave-assisted preparation of activated carbon from biomass: A review. Renew. Sustain. Energy Rev. 2018, 92, 958–979. [Google Scholar] [CrossRef]
- Huang, Y.; Chiueh, P.; Kuan, W.; Lo, S. Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics. Energy 2016, 100, 137–144. [Google Scholar] [CrossRef]
- Yuen, F.K.; Hameed, B.H. Recent developments in the preparation and regeneration of activated carbons by microwaves. Adv. Colloid Interface Sci. 2009, 149, 19–27. [Google Scholar] [CrossRef]
- Peng, C.; Peng, C.; Zhai, Y.; Zhu, Y.; Wang, T.; Xu, B.; Wang, T.; Li, C.; Zeng, G. Investigation of the structure and reaction pathway of char obtained from sewage sludge with biomass wastes, using the hydrothermal treatment. J. Clean. Prod. 2017, 166, 114–123. [Google Scholar] [CrossRef]
- Reza, M.T.; Lynam, J.G.; Uddin, M.H.; Coronella, C.J. Hydrothermal carbonisation: Fate of inorganics. Biomass Bioenergy 2013, 49, 86–94. [Google Scholar] [CrossRef]
- Hoffmann, V.; Jung, D.; Alhnidi, M.J.; Mackle, L.; Kruse, A. Bio-based carbon materials from potato waste as electrode materials in supercapacitors. Energies 2020, 13, 2406. [Google Scholar] [CrossRef]
- Liu, C.; Chen, W.; Hong, S.; Pan, M.; Jiang, M.; Wu, Q.; Mei, C. Fast microwave synthesis of hierarchical porous carbons from waste palm boosted by activated carbons for supercapacitors. Nanomaterials 2019, 9, 405. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Jiang, K.; Tahir, M.; Wu, X.; Idrees, F.; Shen, M.; Cao, C. Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors. J. Power Sources 2017, 371, 148–155. [Google Scholar] [CrossRef]
- Xu, B.; Chen, Y.; Wei, G.; Cao, G.; Zhang, H.; Yang, Y. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater. Chem. Phys. 2010, 124, 504–509. [Google Scholar] [CrossRef]
- Theydan, S.K.; Ahmed, M.J. Optimisation of preparation conditions for activated carbons from date stones using response surface methodology. Powder Technol. 2012, 224, 101–108. [Google Scholar] [CrossRef]
- Sivachidambaram, M.; Vijaya, J.J.; Kennedy, L.J.; Jothiramalingam, R.; Al-Lohedan, H.A.; Munusamy, M.A.; Elanthamilane, E.; Merlin, J.P. Preparation and characterization of activated carbon derived from the Borassus flabellifer flower as an electrode material for supercapacitor applications. New J. Chem. 2017, 41, 3939–3949. [Google Scholar]
- Reis, G.S.d.; Adebayo, M.A.; Lima, E.C.; Sampaio, C.H.; Prola, L.D.T. Activated carbon from sewage sludge for preconcentration of copper. Anal. Lett. 2016, 49, 541–555. [Google Scholar] [CrossRef]
- Lv, W.M.; Wen, F.S.; Xiang, J.Y.; Zhao, J.; Li, L.; Wang, L.M.; Liu, Z.Y.; Tian, Y.J. Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim. Acta 2015, 176, 533–541. [Google Scholar] [CrossRef]
- Chen, R.; Li, L.; Liu, Z.; Lu, M.; Wang, C.; Li, H.; Ma, W.; Wang, S. Preparation and characterisation of activated carbons from tobacco stem by chemical activation. J. Air Waste Manag. Assoc. 2017, 67, 713–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Yu, X.; Meng, H.; Dou, P.; Ma, D.; Xu, X. Nanoengineered three-dimensional hybrid Fe2O3@PPy nanotube arrays with enhanced electrochemical performances as lithium-ion anodes. J. Mater. Sci. 2015, 50, 5504–5513. [Google Scholar] [CrossRef]
- Yu, W.; Wang, H.; Liu, S.; Mao, N.; Liu, X.; Shi, J.; Liu, W.; Chen, S.; Wang, X. N O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J. Mater. Chem. A 2016, 4, 5973–5983. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, K.X.; Li, D.G.; Chen, J.S. Hierarchical porous carbon derived from rice straw for lithium-ion batteries with high-rate performance. Electrochem. Commun. 2009, 11, 130–133. [Google Scholar] [CrossRef]
- Selvamani, V.; Ravikumarc, R.; Suryanarayanan, V.; Velayutham, D.; Gopukumar, S. Fish scale derived nitrogen-doped hierarchical porous carbon—A high rate performing anode for lithium-ion cell. Electrochim. Acta 2015, 182, 1–10. [Google Scholar] [CrossRef]
- Hernández-Rentero, C.; Marangon, V.; Olivares-Marín, M.; Gómez-Serrano, V.; Caballero, Á.; Morales, J.; Hassoun, J. Alternative lithium-ion battery using biomass-derived carbons as an environmentally sustainable anode. J. Colloid Interface Sci. 2020, 573, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Lotfabad, E.M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W.P.; Hazelton, M.; Mitlin, D. High-density sodium and lithium-ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129. [Google Scholar] [CrossRef]
- Iakunkov, A.; Skrypnichuk, V.; Nordenström, A.; Shilayeva, E.A.; Korobov, M.; Prodana, M.; Enachescu, M.; Larsson, S.H.; Talyzin, A. Activated graphene as a material for supercapacitor electrodes: Effects of surface area, pore size distribution and hydrophilicity. Phys. Chem. Chem. Phys. 2019, 32, 17901–17912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chen, L.; Meng, Y.; Xie, J.; Guo, Y.; Xiao, D. Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. J. Power Sources 2016, 335, 20–30. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Lin, C.; Yang, W.; Meng, Y.; Guo, Y.; Li, M.; Xiao, D. Hierarchically porous nitrogen-rich carbon derived from a wheat straw as an ultrahigh-rate anode for lithium-ion battery. J. Mater. Chem. A 2014, 2, 9684–9690. [Google Scholar] [CrossRef]
- Peng, L.; Cai, Y.; Luo, Y.; Yuan, G.; Huang, J.; Hu, C.; Dong, H.; Xiao, Y.; Liang, Y.; Liu, Y.; et al. Bio-inspired highly crumpled porous carbons with multidirectional porosity for high rate performance electrochemical supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 12716–12726. [Google Scholar]
- Luna-Lama, F.; Rodríguez-Padron, D.; Puente-Santiago, A.R.; Munoz-Batista, M.J.; Caballero, A.; Balu, A.M.; Romero, A.A.; Luque, R. Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. J. Cleaner Prod. 2019, 207, 411–417. [Google Scholar] [CrossRef]
- Sun, X.L.; Wang, X.H.; Feng, N.; Qiao, L.; Li, X.; He, D.Y. A new carbonaceous material derived from biomass source peels as an improved anode for lithium-ion batteries. J. Anal. Appl. Pyrolysis 2013, 100, 181–185. [Google Scholar] [CrossRef]
- Yun, Y.S.; Jin, H.-J. Electrochemical performance of heteroatom-enriched amorphous carbon with hierarchical porous structure as anode for lithium-ion batteries. Mater. Lett. 2013, 108, 311–315. [Google Scholar] [CrossRef]
- Mendoza-Sánchez, B.; Gogotsi, Y. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 2016, 28, 6104–6135. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, G.; Duan, X. Self-assembled three-dimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675. [Google Scholar] [CrossRef] [PubMed]
- Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Song, Y.; Zhang, H.; Xu, J.; Duan, H.; Liu, J. Radially aligned porous carbon nanotube arrays on carbon fibers: A hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Adv. Funct. Mater. 2016, 26, 3012–3020. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: Mechanism, materials, systems, characterisation and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef]
- Ma, Q.; Yu, Y.; Sindoro, M.; Fane, A.G.; Wang, R.; Zhang, H. Carbon-based functional materials derived from waste for water remediation and energy storage. Adv. Mater. 2017, 29, 1605361–1605379. [Google Scholar] [CrossRef]
- Dutta, S.; Bhaumik, A.; Wu, K.C.W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574–3592. [Google Scholar] [CrossRef]
- Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Poh, C.K.; Chen, J.S.; Xu, G.; Wang, D.; Li, Q.; Lin, J.; Lou, X.W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4, 717–724. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of highquality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.; Okabe, K.; Oya, A. Designing carbon materials with unique shapes using polymer blending and coating techniques. Carbon 2002, 40, 315–320. [Google Scholar] [CrossRef]
- He, X.; Ling, P.; Qiu, J.; Yu, M.; Zhang, X.; Yu, C.; Zheng, M. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density. J. Power Sources 2013, 240, 109–113. [Google Scholar] [CrossRef]
- Sun, L.; Tian, C.; Li, M.; Meng, X.; Wang, L.; Wang, R.; Yin, J.; Fu, H. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 2013, 1, 6462–6470. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, N.; Chong, S.; Li, D.; Chen, Y.; Sun, C. Three-dimensional porous graphene-like sheets synthesised from biocarbon via low-temperature graphitisation for a supercapacitor. Green Chem. 2018, 20, 694–700. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Y.; Dong, H.; Zhao, X.; Xiao, Y.; Liang, Y.; Hu, H.; Liu, Y.; Zheng, M. Hierarchically porous carbon nanosheets derived from Moringa oleifera stem as electrode material for high-performance electric double-layer capacitors. J. Power Sources 2017, 353, 260–269. [Google Scholar] [CrossRef]
- Chen, H.; Liu, D.; Shen, Z.; Bao, B.; Zhao, S.; Wu, L. Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochim. Acta 2015, 180, 241–251. [Google Scholar] [CrossRef]
- Xia, L.; Huang, H.; Fana, Z.; Hu, D.; Zhang, D.; Khan, A.S.; Usman, M.; Pan, L. Hierarchical macro-/meso-/microporous oxygen-doped carbon derived from sodium alginate: A cost-effective biomass material for binder-free supercapacitors. Mater. Des. 2019, 182, 108048. [Google Scholar] [CrossRef]
- Sankar, S.; Ahmed, A.T.A.; Inamdar, A.I.; Im, H.; Im, Y.B.; Lee, Y.; Kim, D.Y.; Lee, S. Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors. Mat. Des. 2019, 169, 107688. [Google Scholar] [CrossRef]
- Song, X.; Ma, X.; Li, Y.; Ding, L.; Jiang, R. Tea waste-derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Appl. Surface Sci. 2019, 487, 189–197. [Google Scholar] [CrossRef]
- Song, S.; Ma, F.; Wu, G.; Ma, D.; Geng, W.; Wan, J. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 2015, 3, 18154–18162. [Google Scholar] [CrossRef]
- Tian, W.; Gao, Q.; Tan, Y.; Li, Z. Unusual interconnected graphitised carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor. Carbon 2017, 119, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Wang, Y.; Zhang, T.; Wua, X.; Cai, J. High-performance hierarchical N-doped porous carbons from hydrothermally carbonised bamboo shoot shells for symmetric supercapacitors. J. Taiwan Inst. Chem. Eng. 2019, 96, 672–680. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, J.-P.; Zhao, X.-Y.; Zhuang, Q.-Q.; Zhou, Z.; Huang, Y.; Wei, X.-Y. High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2. Appl. Surf. Sci. 2020, 508, 144536. [Google Scholar] [CrossRef]
- Ren, M.; Jia, Z.; Tian, Z.; Lopez, D.; Cai, J.; Titirici, M.M.; Jorge, A.B. High-performance n-doped carbon electrodes obtained via hydrothermal carbonisation of macroalgae for supercapacitor applications. ChemElectroChem 2018, 5, 2686–2693. [Google Scholar] [CrossRef]
- Lima, D.R.; Hosseini-Bandegharaei, A.; Thue, P.S.; Lima, E.C.; de Albuquerque, Y.R.T.; dos Reis, G.S.; Umpierres, C.S.; Dias, S.L.P.; Tran, H.N. Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids Surfaces A 2019, 583, 123966. [Google Scholar] [CrossRef]
- Thue, P.S.; Umpierres, C.S.; Lima, E.C.; Lima, D.R.; Machado, F.M.; Reis, G.S.d.; Silva, R.S.; Pavan, F.A.; Tran, H.N. Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel(II) chloride and zinc(II) chloride. Application for removal of nicotinamide and propranolol. J Hazard. Mat. 2020, 398, 122903. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.D.; Wu, Y.-H.; Wu, T.-Y.; Deng, M.-J.; Yang, C.-H.; Chang, J.-K. Gravimetric/volumetric capacitances, leakage current, and gas evolution of activated carbon supercapacitors. Electrochim. Acta 2016, 222, 1153–1159. [Google Scholar] [CrossRef]
- Hall, P.J.; Mirzaeian, M.; Fletcher, S.I.; Sillars, F.B.; Rennie, A.J.; Shitta-Bey, G.O.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 2010, 3, 1238–1251. [Google Scholar] [CrossRef]
- Ding, Z.; Trouillet, V.; Dsoke, S. Are functional groups beneficial or harmful on the electrochemical performance of activated carbon electrodes? J. Electrochem. Soc. 2019, 166, A1004–A1014. [Google Scholar] [CrossRef]
- Liu, C.; Koyyalamudi, B.B.; Li, L.; Emani, S.; Wang, C.; Shaw, L.L. Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors. Carbon 2016, 109, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Abbas, Q.; Mirzaeian, M.; Ogwu, A.A.; Mazur, M.; Gibson, D. Effect of physical activation/surface functional groups on wettability and electrochemical performance of carbon/activated carbon aerogels based electrode materials for electrochemical capacitors. Int. J. Hydrogen Energy 2020, 45, 13586–13595. [Google Scholar] [CrossRef] [Green Version]
- Hulicova-Jurcakova, D.; Kodama, M.; Shiraishi, S.; Hatori, H.; Zhu, Z.H.; Lu, G.Q. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater. 2009, 19, 1800–1809. [Google Scholar] [CrossRef]
- Cao, H.; Peng, X.; Liu, M.Z.P.; Xua, B.; Guo, J. Oxygen functional groups improve the energy storage performances of graphene electrochemical supercapacitors. RSC Adv. 2018, 8, 2858–2865. [Google Scholar] [CrossRef] [Green Version]
- Widmaier, M.; Krüner, B.; Jäckel, N.; Aslan, M.; Fleischmann, S.; Engel, C.; Presser, V.J. Carbon as quasi-reference electrode in unconventional lithium-salt containing electrolytes for hybrid battery/supercapacitor devices. J. Electrochem. Soc. 2016, 14, 163. [Google Scholar]
- Elmouwahidi, A.; Zapata-Benabithe, Z.; Carrasco-Marín, F.; Moreno-Castilla, C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 2012, 111, 185–190. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Feng, Y. High electrochemical performance from oxygen functional groups containing porous activated carbon electrode of supercapacitors. Materials 2018, 11, 2455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, L.; Seong, K.D.; Ko, D.; Choi, J.; Lee, C.; Hwang, T.; Cho, Y.; Jin, X.; Zhang, W.; Pang, H.; et al. Recent devel as electrode materials for supercapacitors. Mater. Chem. Front. 2019, 3, 2543–2570. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, S.; Li, L.; Dou, S. Bio-nanotechnology in high-performance supercapacitors. Adv. Energy Mater. 2017, 7, 1700592. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, C.; Zhang, Z.; Zhong, W. Synthesis and enhancement of electroactive biomass/polypyrrole hydrogels for high-performance flexible all-solid-state supercapacitors. Adv. Mater. Interfaces 2019, 6, 1901393. [Google Scholar] [CrossRef]
- Arthisree, D.; Madhuri, W. Optically active polymer nanocomposite composed of polyaniline, polyacrylonitrile and green synthesised graphene quantum dot for supercapacitor application. Int. J. Hydrog. Energy 2020, 45, 9317–9327. [Google Scholar] [CrossRef]
- Yua, M.; Hana, Y.; Li, Y.; Li, J.; Wang, L. Polypyrrole-anchored cattail biomass-derived carbon aerogels for high performance binder-free supercapacitors. Carbohydr. Polym. 2018, 199, 555–562. [Google Scholar] [CrossRef]
Biomass Precursor | Hemicellulose (%) | Cellulose (%) | Lignin (%) | Ref. |
---|---|---|---|---|
Coconut husk | 23.7 | 0.52 | 3.54 | [33] |
Sugarcane bagasse | 27–32 | 32–44 | 19–24 | [34] |
Hardwood stem | 24–40 | 40–50 | 18–25 | [34] |
Softwood stems | 25–35 | 45–50 | 25–35 | [34] |
Sunflower shell | 34.6 | 48.4 | 17 | [34] |
Bamboo | 15–26 | 26–43 | 21–31 | [34] |
Banana residues | 14.8 | 13.2 | 14.0 | [34] |
Cocoa pod husks | 37 | 35.4 | 14.7 | [34] |
Biomass Precursor | Pyrolysis Method and Optimal Condition | SSA (m2 g−1) | Main Electrochemical Findings | Electrolyte | Ref. |
---|---|---|---|---|---|
Cattle bone | Heated at 1100 °C in for 1 h under N2 and washed with 1 M HCl | 2096 | Electrode exhibited remarkable RC of 1488 mA h g-1 after 250 cycles at 1 A g−1 and 661 mA h g−1 after 1500 cycles at 10 A g−1; at 30 A g−1 it delivered 281 mA h g−1 of RC. | 1 M LiPF6 in DEC:EC solution (ratio 1:1) | [9] |
Peanut shell | Pyrolysed at 600 °C for 5 h and immersed in a solution of containing 7%wt ZnCl2, 7%wt K2CO3 and 1 M H3PO4 for 48 h | 706.1 | Initial coulombic efficiency of 48.6% at 1 A g−1; RC of 1230 at 50 mA g−1; Rate capability of 310 mAh g−1 at 5 A g−1. | 1 M LiPF6 dissolved in EC:EMC (1:1 v/v) | [57] |
Rice straw | Heated at 400 °C for 3 h under N2. After, it was soaked in a KOH for 1 day. Afterwards, heated again at 750 °C for 2 h under N2 | 3315 | Initial coulombic efficiency of 48% at 37.2 mA g−1; RC of 986 of 1st cycle at 37.2 mA g−1; Rate capability of 257 mAh g−1 at 0.744 A g−1. | 1 M LiPF6 and EMC:EC:DMC at ratio 1:1:1 | [61] |
Fish scale | Fish scale mixed with KOH (1:1 ratio) followed by heating at 850 °C for 1 h under N2. Afterwards, washed with 1.0 M HCl | 1980 | Initial coulombic efficiency of 90%; RC of 500 and 480 mAh g−1 at a current density of 75 mA g−1 and discharge capacities of 224.7 and 232.5 mAh g−11 at 2000 mA g−11 after 75 cycles | N2224-TFSI * | [62] |
Cherry pit | Conventional at 800 °C in for 2 h with KOH at 1:1 ratio | 1171 | 98% for coulombic efficiency (upon 20 cycles); capacity retention of 94% (160 mAh g−1) upon 200 cycles; Energy density of about 450 Wh kg−1. | 1 M LiPF6 and EC:DMC at ratio 1:1 | [63] |
Cherry pit | Conventional at 800 °C in for 2 h with H3PO4 at 1:1 ratio | 1662 | coulombic efficiency of 99% after 20 cycles; capacity retention higher than 96%. Energy density of about 450 Wh kg−1 | 1 M LiPF6 and EC:DMC at ratio 1:1 | [63] |
Banana peel | Pyrolysed at 1100 °C for 5 h and washed in 20% KOH at 70 °C for 2 h and 2 M HCl for 12 h | 130.8 | Initial coulombic efficiency of 55% at 50 mA g−1; RC of 1184 of 2nd at 50 mA g-1 and 790 of 11th cycle at 100 mA g−1; Rate capability of 243 mAh g−1 at 5 A g−1. | 1 M LiPF6 in a 1:1:1 volume ratio of EC: DMC:DEC | [64] |
Honey | 700 °C for 2 h and then treated in 5% Hydrofluoric acid solution for 12 h | 677.7 | Initial coulombic efficiency of 61% at 100 mA g−1; RC of 1653 mAh g−1 of 1st cycle and 1359 of 10th cycle at 100 mA g−1; Rate capability of 390 mAh g−1 at 5 A g−1. | LiPF6 (1M) in EC:DEC with ratio 1:1 (v/v) | [66] |
Coffee | Conventional at 800 °C in for 2 h at N2 | 10 | Electrode exhibited a remarkable anode performance with an RC of 285 mAh g−1 at 0.1 A g−1, an excellent capacity retention over 100 cycles and a coulombic efficiency nearly to 100%. | LiPF6 (1M ) in EC:DEC with ratio 1:1 (v/v) | [69] |
Spongy pomelo peels | Carbonised at 900 °C in an argon-flowing for 3 h | 114 | Initial coulombic efficiency of 59.5% at 40 mA g-1; RC of 450 of 1st cycle at 40 mA g−1; Rate capability of 293 mAh g-1 at 0.32 A g−1. | LiPF6 (1M) in EC:DEC with ratio 1:1 (v/v) | [70] |
Cotton cellulose | Carbon material mixed with elemental sulfur powder at ratio 1:1 and then carbonised at 600 °C under ar flow rate. | 1265.9 | Initial coulombic efficiency of 76% at 50 mA g-1; RC of 935 of 1st cycle at 50 mA g−1; Rate capability of 240 mAh g−1 at 2 A g−1. | 1 M LiPF6 dissolved in EC:EMC (1:2:1 v/v) | [71] |
Biomass Precursor | Pyrolysis Method and Optimal Condition | SSA (m2 g−1) | Main Electrochemical Findings | Electrolyte | Ref. |
---|---|---|---|---|---|
Cattle bone | Heated at 1100°C in for 1 h under N2 and washed with 1 M HCl | 2096 | The energy density of 109.9 W h kg−1 at a power density of 4.4 kW kg−1; energy density of 65.0 W h kg−1 at a power density of 81.5 kW kg−1; capacity retention of 96.4% after 5000 cycles. | EMIM-BF4 | [9] |
Puffed rice | Pre-carbonised at 500 °C for 1 h. Then, mixed with KOH and further activated at 850°C for 1 h under N2. Afterwards washed with 1 M HCl solution. | 3326 | Spe.Cap of 218 F g−1 at 80 A g−1; energy-density of 104 Wh kg−1 (53 Wh L−1) | 6 M KOH | [52] |
Reed membrane | Conventional - KOH | Spe.Cap of 353.6 F g−1 at 0.5 A g−1; Energy density of 57.7 Wh kg−1 at 10 kW kg−1; Rate capability of 184 F g−1 at 30 A g−1; 10000 cycles; capacitance retention of 91% | 6 M KOH | [52] | |
Peanut shell | Impregnation with ZnCl2/biomass (4/1 ratio) for 12 h. Then, heated in Microwave oven at 600W for 20 min under N2. | 1552 | The energy density of 19.3 Wh kg−1 at a high power density of 1007 W kg−1. Spe.Cap reached 99 F g−1. | Et4NBF4/PC | [83] |
Coconut shell | Biomass/ ZnCl2 at ratio 1:3 (w:w) in 50 mL of 3 M FeCl3 solution, then pyrolysied at 900 °C for 1 h under N2. | 1874 | Spe.Cap of 268 F g−1 at 1.0 A g−1; Energy density of 11.6 Wh kg−1 at 210 W kg−1; Rate capability of 76.9% at 10 A g−1; 5000 cycles; capacitance retention of 99.5% | 6 M KOH | [84] |
Coconut shell | Carbonised at 400 °C for 3 h under N2. Then, mixed with K2CO3 at ratio (1:2) and heated at 900 °C for 2 h and then, washed with HCl. | 1506.2 | Spe.Cap of 91.5 F g−1 at 0.2 A g−1; Energy density of 25.8 Wh kg−1 at 89 W kg−1; Rate capability of 72% at 50 A g−1; 20000 cycles; capacitance retention of 95% | 1 M TEMABF4/propylene carbonate | [84] |
Moringa oleifera stem | Biomass mixed with ZnCl2 (ratio 1:3) in 50 ml of 2 M FeCl3 solution for 2 h, then was heated at 800 °C for 2 h under N2. Then, washed with 2.0 M HCl. | 2250 | Spe.Cap of 283 F g−1 at 0.5 A g−1; Energy density of 11.6 Wh kg−1 at 95 W kg−1; 2000 cycles; capacitance retention of 82% | 1.0 M Na2SO4 1.0 M H2SO4 | [85] |
Bamboo | Biomass/KOH at 1:4 of ratio and pyrolysed at 750 °C under N2 and washed with HCl (6 wt%). | 171.5 | Spe.Cap of 318 F g−1 at 0.2 A g−1; Energy density of 42.1 Wh kg−1 at 210 W kg−1; Rate capability of 76.9% at 10 A g−1; 5000 cycles; capacitance retention of 99.5% | 1 M H2SO4 | [87] |
Sodium alginate | Biomass mixed with CaSO4 and heated at 700 °C under Argon flow for 3 h. Sample soaked in 1 M HCl at 60 °C for 12 h. | 1531.4 | Spe.Cap of 424.6 F g−1 at the current density of 1 A g−1; capacitance retention of 90.4% and coulombic efficiency of 100%, respectively, after 20,000 charge-discharge cycles. | 6 M KOH | [88] |
Tea residues | Firstly, carbonised at 500 °C for 1 h in air. Then, biomass/KOH ratio of 1:4 by weight and heated at 700 °C under N2 and washed with 1 M HCl. | 966.4 | Spe.Cap of 162 F/g at 0.5 A/g; (cyclic capacitance retention of 121% over 5000 cycles); High cycle stability after sevral charge-discharge cycles. | 1 M H2SO4 | [89] |
Tea leave | Biomass/KOH ratio of 1:2 by weight and heated at 900 °C for 1 h under Argon flow and washed with 1 M HCl. Afterwards, heated at 1200 °C for 60 min. | 911.92 | Spe.Cap of 167 F g−1 at 1.0 A g−1; Energy density of 47.86 Wh kg−1 at 1580.72 W kg−1; Rate capability of 81.42% at 30 A g−1; 16000 cycles; capacitance retention of 96.66% | 6 M KOH 1 M Na2SO4 | [90] |
Cornhusk | 5 g of biomass into 100 ml of 7% KOH solution at 80 °C for 4 h. Then, heated at 800 °C for 1 h under N2. Afterwards, washed with 1 M HCl solution. | 928 | Spe.Cap of 356 F g−1 at 1.0 A g−1; Energy density of 21 Wh kg−1 at 875 W kg−1; Rate capability of 88% at 10 A g−1; 2500 cycles; capacitance retention of 95% | 6 M KOH | [91] |
Cornhusk | 5 g of biomass into 100 ml of 7% KOH solution at 80 °C for 4 h. Then, heated at 800 °C for 1 h under N2. Afterwards, washed with 1 M HCl solution. | 928 | Spe.Cap of 300 F g−1 at 20.0 A g−1; Energy density of 56 Wh kg−1 at 93 kW kg−1; Rate capability of 88% at 10 A g−1; 2500 cycles; capacitance retention of 95% | 1 M Na2SO4 | [91] |
Shaddock skin | Biomass was mixed with ZnCl2 (ratio 1:2) in 50 ml 3 M FeCl3 solution at a solids loading of 5 wt.%. Then, heated at 900 °C for 2 h under Ar flow. | 2327 | Spe.Cap of 152 F g−1 at 1.0 A g−1; Energy density of 11 Wh kg−1 at 5600 W kg−1; Rate capability of 87% at 100 A g−1; 10000 cycles; capacitance retention of 97.6% | A mixture of EMI TFSI and EMI BF4 | [92] |
Bamboo shoot shells | 4.0 g of biomass in 75 mL of 1 wt% H2SO4 solution were hydrothermally treated (HTC) at 200 °C for 24 h, and further heated at 800 °C with KOH (ratio of 1:2) for 1 h under N2 flow. | 3300 | Spe.Cap of 209 F g−1 at 0.5 A g−1; Coulombic efficiency of 100% at 10 mA g−1; Cycling stability performance of 95% after 10,000 cycles at 10 A/g. | 6 M KOH | [93] |
Alkali Lignin | Hydrothermally treated (HTC) at 180°C for 10 h, and further heated at 700 °C with KOH (ratio of 1:5) for 1 h under N2 flow | 2486 | Initial coulombic efficiency of 99.76% after 10,000 cycles; Spe.Cap of 384 F g−1 at 40 mA g−1; high energy density of 10.48 Wh kg−1. | 6 M KOH | [94] |
Macroalgae | HTC plus conventional with ZnCl2 | ~2000 | coulombic efficiency ~ 100% 96% retention at 10 A/g after 10000 cycles; Spe.Cap of 202 F g−1 at 0.5 mA g−1; energy density of 7 Wh/kg and power density of 3000 W/kg | 6 M KOH | [95] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Reis, G.S.; Larsson, S.H.; de Oliveira, H.P.; Thyrel, M.; Claudio Lima, E. Sustainable Biomass Activated Carbons as Electrodes for Battery and Supercapacitors—A Mini-Review. Nanomaterials 2020, 10, 1398. https://doi.org/10.3390/nano10071398
dos Reis GS, Larsson SH, de Oliveira HP, Thyrel M, Claudio Lima E. Sustainable Biomass Activated Carbons as Electrodes for Battery and Supercapacitors—A Mini-Review. Nanomaterials. 2020; 10(7):1398. https://doi.org/10.3390/nano10071398
Chicago/Turabian Styledos Reis, Glaydson Simões, Sylvia H. Larsson, Helinando Pequeno de Oliveira, Mikael Thyrel, and Eder Claudio Lima. 2020. "Sustainable Biomass Activated Carbons as Electrodes for Battery and Supercapacitors—A Mini-Review" Nanomaterials 10, no. 7: 1398. https://doi.org/10.3390/nano10071398
APA Styledos Reis, G. S., Larsson, S. H., de Oliveira, H. P., Thyrel, M., & Claudio Lima, E. (2020). Sustainable Biomass Activated Carbons as Electrodes for Battery and Supercapacitors—A Mini-Review. Nanomaterials, 10(7), 1398. https://doi.org/10.3390/nano10071398