Glycan Nanobiosensors
Abstract
:1. Glycomics
2. Glycan-Functionalized Nanoparticles (NPs)
2.1. Gold Nanoparticles (AuNPs)
2.2. Quantum Dots (QDs)
2.3. Magnetic Nanoparticles (MNPs)
2.4. Carbon Nanoparticles
2.5. Other Nanoparticles
2.6. Hybrid Nanoparticles
2.7. Other Nanoscale Approaches
3. Proteins as Nanoscaffolds
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tommasone, S.; Allabush, F.; Tagger, Y.K.; Norman, J.; Kopf, M.; Tucker, J.H.R.; Mendes, P.M. The challenges of glycan recognition with natural and artificial receptors. Chem. Soc. Rev. 2019, 48, 5488–5505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reily, C.; Stewart, T.J.; Novak, J.; Stewart, T.J.; Renfrow, M.B.; Stewart, T.J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef] [PubMed]
- Ruhaak, L.R.; Xu, G.; Li, Q.; Goonatilleke, E.; Lebrilla, C.B. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem. Rev. 2018, 118, 7886–7930. [Google Scholar] [CrossRef] [PubMed]
- Kaltner, H.; Abad-Rodriguez, J.; Corfield, A.P.; Kopitz, J.; Gabius, H.-J. The sugar code: Letters and vocabulary, writers, editors and readers and biosignificance of functional glycan-lectin pairing. Biochem. J. 2019, 476, 2623–2655. [Google Scholar] [CrossRef]
- Copoiu, L.; Malhotra, S. The current structural glycome landscape and emerging technologies. Curr. Opin. Struct. Biol. 2020, 62, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Hirabayashi, J.; Yamada, M.; Kuno, A.; Tateno, H. Lectin microarrays: Concept, principle and applications. Chem. Soc. Rev. 2013, 42, 4443–4458. [Google Scholar] [CrossRef]
- Moremen, K.W.; Tiemeyer, M.; Nairn, A.V. Vertebrate protein glycosylation: Diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012, 13, 448–462. [Google Scholar] [CrossRef] [Green Version]
- Palecek, E.; Tkac, J.; Bartosik, M.; Bertok, T.; Ostatna, V.; Palecek, J. Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics. Chem. Rev. 2015, 115, 2045–2108. [Google Scholar] [CrossRef]
- Dosekova, E.; Bertok, T.; Tkac, J.; Filip, J.; Kasak, P.; Both, P. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med. Res. Rev. 2017, 37, 514–626. [Google Scholar] [CrossRef]
- Smith, D.F.; Cummings, R.D.; Song, X. History and future of shotgun glycomics. Biochem. Soc. Trans. 2019, 47, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, L.; Ju, H. In Situ Cellular Glycan Analysis. Acc. Chem. Res. 2018, 51, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Pinho, S.S.; Reis, C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef] [PubMed]
- Varki, A. Biological roles of glycans. Glycobiology 2017, 27, 3–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stencel-Baerenwald, J.E.; Reiss, K.; Reiter, D.M.; Stehle, T.; Dermody, T.S. The sweet spot: Defining virus-sialic acid interactions. Nat. Rev. Microbiol. 2014, 12, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Tkac, J.; Bertok, T.; Hires, M.; Jane, E.; Lorencova, L.; Kasak, P. Glycomics of prostate cancer: Updates. Exp. Rev. Proteom. 2019, 16, 65–76. [Google Scholar] [CrossRef]
- Tkac, J.; Gajdosova, V.; Hroncekova, S.; Bertok, T.; Hires, M.; Jane, E.; Lorencova, L.; Kasak, P. Prostate-specific antigen glycoprofiling as diagnostic and prognostic biomarker of prostate cancer. Interface Focus 2019, 9, 20180077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunschweig, A.; Byrne, J.P.; Chiechi, R.; Diaz Fernandez, Y.; Gildersleeve, J.; Godula, K.; Hartmann, L.; Mahon, C.; Miura, Y.; Nelson, A.; et al. Preparation of multivalent glycan micro- and nano-arrays: General discussion. Faraday Discuss. 2019, 219, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Byrd-Leotis, L.; Cummings, R.D.; Steinhauer, D.A. The interplay between the host receptor and influenza virus hemagglutinin and neuraminidase. Int. J. Mol. Sci. 2017, 18, 1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.; Paul, T.J.; Strzelczyk, A.K. Interactive Polymer Gels as Biomimetic Sensors for Carbohydrate Interactions and Capture–Release Devices for Pathogens. Macromol. Chem. Phys. 2019, 220, 1900323. [Google Scholar] [CrossRef]
- Boholm, M.; Arvidsson, R. A Definition Framework for the Terms Nanomaterial and Nanoparticle. NanoEthics 2016, 10, 25–40. [Google Scholar] [CrossRef]
- Cepeda-Perez, E.; Lopez-Luke, T.; Plascencia-Villa, G.; Perez-Mayen, L.; Ceja-Fdez, A.; Ponce, A.; Vivero-Escoto, J.; de la Rosa, E. SERS and integrative imaging upon internalization of quantum dots into human oral epithelial cells. J. Biophoton. 2016, 9, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, W.; Liang, X.; Yang, Y.; Zhou, Y. Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: A review. Microchim. Acta 2020, 187, 206. [Google Scholar] [CrossRef] [PubMed]
- Akkilic, N.; Geschwindner, S.; Hook, F. Single-molecule biosensors: Recent advances and applications. Biosens. Bioelectron. 2020, 151, 111944. [Google Scholar] [CrossRef] [PubMed]
- Soh, J.H.; Chan, H.-M.; Ying, J.Y. Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today 2020, 30, 100831. [Google Scholar] [CrossRef]
- Reichardt, N.C.; Martín-Lomas, M.; Penadés, S. Glyconanotechnology. Chem. Soc. Rev. 2013, 42, 4358–4376. [Google Scholar] [CrossRef]
- Wyss, P.P.; Lamichhane, S.P.; Abed, A.; Vonwil, D.; Kretz, O.; Huber, T.B.; Sarem, M.; Shastri, V.P. Renal clearance of polymeric nanoparticles by mimicry of glycan surface of viruses. Biomaterials 2020, 230, 119643. [Google Scholar] [CrossRef]
- Carrouel, F.; Viennot, S.; Bourgeois, D.; Ottolenghi, L.; Gaillard, C. Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation. Nanomaterials 2020, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Wrona, M.; Nerin, C. Analytical approaches for analysis of safety of modern food packaging: A review. Molecules 2020, 25, 752. [Google Scholar] [CrossRef] [Green Version]
- Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv. 2020, 38, 107382. [Google Scholar] [CrossRef]
- Adewale, O.B.; Davids, H.; Cairncross, L.; Roux, S. Toxicological Behavior of Gold Nanoparticles on Various Models: Influence of Physicochemical Properties and Other Factors. Int. J. Toxicol. 2019, 38, 357–384. [Google Scholar] [CrossRef]
- Savage, D.T.; Hilt, J.Z.; Dziubla, T.D. In vitro Methods for Assessing Nanoparticle Toxicity. In Nanotoxicity: Methods and Protocols; Zhang, Q., Ed.; Springer: New York, NY, USA, 2019; pp. 1–29. [Google Scholar]
- Nguyen, M.K.; Moon, J.-Y.; Lee, Y.-C. Microalgal ecotoxicity of nanoparticles: An updated review. Ecotoxicol. Environ. Saf. 2020, 201, 110781. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.-J.; Chen, Y.-Y.; Chen, Z.-Y.; Yeh, Y.-L.; Wang, Y.-J.; Liao, M.-Y.; Lee, Y.-H.; Yan, S.-J.; Yang, L.-X.; Lee, Y.-L.; et al. The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies. Int. J. Mol. Sci. 2020, 21, 2387. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, Q.; Jang, Y.; Park, H.; Kang, S.H.; Moon, J.; Kim, W.J. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomater. Sci. 2020, 8, 1490–1501. [Google Scholar] [CrossRef] [PubMed]
- Sampaolesi, S.; Nicotra, F.; Russo, L. Glycans in nanomedicine, impact and perspectives. Future Med. Chem. 2019, 11, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Boden, S.; Wagner, K.G.; Karg, M.; Hartmann, L. Presenting Precision Glycomacromolecules on Gold Nanoparticles for Increased Lectin Binding. Polymers 2017, 9, 716. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Qu, K.; Tang, L.; Li, Z.; Moore, E.; Zeng, X.; Liu, Y.; Li, J. Nanomaterials in carbohydrate biosensors. Trends Anal. Chem. 2014, 58, 54–70. [Google Scholar] [CrossRef]
- Zhang, H. Molecularly Imprinted Nanoparticles for Biomedical Applications. Adv. Mater. 2020, 32, e1806328. [Google Scholar] [CrossRef]
- Kaushal, S.; Nanda, S.S.; Samal, S.; Yi, D.K. Strategies for the Development of Metallic-Nanoparticle-Based Label-Free Biosensors and Their Biomedical Applications. ChemBioChem 2020, 21, 576–600. [Google Scholar] [CrossRef]
- Yang, T.; Luo, Z.; Tian, Y.; Qian, C.; Duan, Y. Design strategies of AuNPs-based nucleic acid colorimetric biosensors. Trends Anal. Chem. 2020, 124, 115795. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, Y.; Chandrawati, R. Metal and Metal Oxide Nanoparticles to Enhance the Performance of Enzyme-Linked Immunosorbent Assay (ELISA). ACS Appl. Nano Mater. 2020, 3, 1–21. [Google Scholar] [CrossRef]
- Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Hushegyi, A.; Klukova, L.; Bertok, T.; Tkac, J. Carbohydrate Nanotechnology and its Application to Biosensor Development. In Carbohydrate Nanotechnology; Wiley: Hoboken, NJ, USA, 2015; pp. 387–421. [Google Scholar]
- Hao, N.; Neranon, K.; Ramström, O.; Yan, M. Glyconanomaterials for biosensing applications. Biosens. Bioelectron. 2016, 76, 113–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilčíková, M.; Tkáč, J.; Kasák, P. Switchable Materials Containing Polyzwitterion Moieties. Polymers 2015, 7, 2344–2370. [Google Scholar] [CrossRef]
- Wei, T.; Zhan, W.; Yu, Q.; Chen, H. Smart Biointerface with Photoswitched Functions between Bactericidal Activity and Bacteria-Releasing Ability. ACS Appl. Mater. Interfaces 2017, 9, 25767–25774. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Wei, T.; Cao, L.; Hu, C.; Qu, Y.; Yu, Q.; Chen, H. Supramolecular Platform with Switchable Multivalent Affinity: Photo-Reversible Capture and Release of Bacteria. ACS Appl. Mater. Interfaces 2017, 9, 3505–3513. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Qu, Y.; Wei, T.; Hu, C.; Pan, Y.; Yu, Q.; Chen, H. Sweet Switch: Sugar-Responsive Bioactive Surfaces Based on Dynamic Covalent Bonding. ACS Appl. Mater. Interfaces 2018, 10, 10647–10655. [Google Scholar] [CrossRef]
- Zhan, W.; Wei, T.; Yu, Q.; Chen, H. Fabrication of Supramolecular Bioactive Surfaces via β-Cyclodextrin-Based Host–Guest Interactions. ACS Appl. Mater. Interfaces 2018, 10, 36585–36601. [Google Scholar] [CrossRef]
- Romero-Ben, E.; Cid, J.J.; Assali, M.; Fernández-García, E.; Wellinger, R.E.; Khiar, N. Surface modulation of single-walled carbon nanotubes for selective bacterial cell agglutination. Int. J. Nanomed. 2019, 14, 3245. [Google Scholar] [CrossRef] [Green Version]
- Bertok, T.; Lorencova, L.; Hroncekova, S.; Gajdosova, V.; Jane, E.; Hires, M.; Kasak, P.; Kaman, O.; Sokol, R.; Bella, V. Advanced impedimetric biosensor configuration and assay protocol for glycoprofiling of a prostate oncomarker using Au nanoshells with a magnetic core. Biosens. Bioelectron. 2019, 131, 24–29. [Google Scholar] [CrossRef]
- Bertok, T.; Lorencova, L.; Hroncekova, S.; Gajdosova, V.; Jane, E.; Hires, M.; Kasak, P.; Kaman, O.; Sokol, R.; Bella, V. Synthesis and characterization of Au nanoshells with a magnetic core and betaine derivatives. MethodsX 2019, 6, 1999–2012. [Google Scholar] [CrossRef]
- Lorencova, L.; Gajdosova, V.; Hroncekova, S.; Bertok, T.; Jerigova, M.; Velic, D.; Sobolciak, P.; Krupa, I.; Kasak, P.; Tkac, J. Electrochemical investigation of interfacial properties of Ti3C2Tx MXene modified by aryldiazonium betaine derivatives. Front. Chem. 2020. [Google Scholar] [CrossRef]
- Pernia Leal, M.; Assali, M.; Cid, J.J.; Valdivia, V.; Franco, J.M.; Fernandez, I.; Pozo, D.; Khiar, N. Synthesis of 1D-glyconanomaterials by a hybrid noncovalent-covalent functionalization of single wall carbon nanotubes: A study of their selective interactions with lectins and with live cells. Nanoscale 2015, 7, 19259–19272. [Google Scholar] [CrossRef] [PubMed]
- Eickelmann, S.; Tsouka, A.; Heidepriem, J.; Paris, G.; Zhang, J.; Molinari, V.; Mende, M.; Loeffler, F.F. A Low-Cost Laser-Based Nano-3D Polymer Printer for Rapid Surface Patterning and Chemical Synthesis of Peptide and Glycan Microarrays. Adv. Mater. Technol. 2019, 4, 1900503. [Google Scholar] [CrossRef]
- Cunha, C.R.A.; Oliveira, A.D.P.R.; Firmino, T.V.C.; Tenorio, D.P.L.A.; Pereira, G.; Carvalho, L.B., Jr.; Santos, B.S.; Correia, M.T.S.; Fontes, A. Biomedical applications of glyconanoparticles based on quantum dots. Biochim. Biophys. Gen. Subj. 2018, 1862, 427–439. [Google Scholar] [CrossRef]
- Han, X.; Zheng, Y.; Munro, C.J.; Ji, Y.; Braunschweig, A.B. Carbohydrate nanotechnology: Hierarchical assembly using nature’s other information carrying biopolymers. Curr. Opin. Biotechnol. 2015, 34, 41–47. [Google Scholar] [CrossRef]
- Yilmaz, G.; Becer, C.R. Glyconanoparticles and their interactions with lectins. Polym. Chem. 2015, 6, 5503–5514. [Google Scholar] [CrossRef] [Green Version]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Wang, P.; Gaston, M.A.; Weiss, A.A.; Zhang, P. Plasmonics-Based Detection of Virus Using Sialic Acid Functionalized Gold Nanoparticles. In Biosensors and Biodetection: Methods and Protocols Volume 1: Optical-Based Detectors; Rasooly, A., Prickril, B., Eds.; Springer: New York, NY, USA, 2017; pp. 109–116. [Google Scholar]
- García, I.; Sánchez-Iglesias, A.; Henriksen-Lacey, M.; Grzelczak, M.; Penadés, S.; Liz-Marzán, L.M. Glycans as Biofunctional Ligands for Gold Nanorods: Stability and Targeting in Protein-Rich Media. J. Am. Chem. Soc. 2015, 137, 3686–3692. [Google Scholar] [CrossRef]
- Lee, C.; Gaston, M.A.; Weiss, A.A.; Zhang, P. Colorimetric viral detection based on sialic acid stabilized gold nanoparticles. Biosens. Bioelectron. 2013, 42, 236–241. [Google Scholar] [CrossRef]
- Richards, S.-J.; Otten, L.; Gibson, M.I. Glycosylated gold nanoparticle libraries for label-free multiplexed lectin biosensing. J. Mater. Chem. B 2016, 4, 3046–3053. [Google Scholar] [CrossRef] [Green Version]
- Adak, A.K.; Li, B.Y.; Lin, C.C. Advances in multifunctional glycosylated nanomaterials: Preparation and applications in glycoscience. Carbohydr. Res. 2015, 405, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Fratila, R.M.; Moros, M.; de la Fuente, J.M. Recent advances in biosensing using magnetic glyconanoparticles. Anal. Bioanal. Chem. 2016, 408, 1783–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianvincenzo, P.D.; Calvo, J.; Perez, S.; Álvarez, A.; Bedoya, L.M.; Alcamí, J.; Penadés, S. Negatively Charged Glyconanoparticles Modulate and Stabilize the Secondary Structures of a gp120 V3 Loop Peptide: Toward Fully Synthetic HIV Vaccine Candidates. Bioconjug. Chem. 2015, 26, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Sunasee, R.; Narain, R. Carbohydrate Nanotechnology Applied to Vaccine Development. In Carbohydrate Nanotechnology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 369–385. [Google Scholar]
- Wei, J.; Zheng, L.; Lv, X.; Bi, Y.; Chen, W.; Zhang, W.; Shi, Y.; Zhao, L.; Sun, X.; Wang, F.; et al. Analysis of Influenza Virus Receptor Specificity Using Glycan-Functionalized Gold Nanoparticles. ACS Nano 2014, 8, 4600–4607. [Google Scholar] [CrossRef]
- Zheng, L.; Wei, J.; Lv, X.; Bi, Y.; Wu, P.; Zhang, Z.; Wang, P.; Liu, R.; Jiang, J.; Cong, H.; et al. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens. Bioelectron. 2017, 91, 46–52. [Google Scholar] [CrossRef]
- Adokoh, C.; Darkwa, J.; Narain, R. Synthetic Approach to Glycopolymer Base Nanoparticle Gold(I) Conjugate: A New Generation of Therapeutic Agents. In Macro-Glycoligands; Humana Press: New York, NY, USA, 2016; pp. 157–168. [Google Scholar]
- Chuang, Y.-J.; Zhou, X.; Pan, Z.; Turchi, C. A convenient method for synthesis of glyconanoparticles for colorimetric measuring carbohydrate-protein interactions. Biochem. Biophys. Res. Commun. 2009, 389, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Yang, Z.; You, H.; Tian, C.; Li, Z.; Fang, J. Gold mesoparticles with precisely controlled surface topographies for single-particle surface-enhanced Raman spectroscopy. J. Mater. Chem. C 2013, 1, 5567–5576. [Google Scholar] [CrossRef]
- Ou, J.; Zhou, Z.; Chen, Z.; Chen, Z.; Tan, H. Optical Diagnostic Based on Functionalized Gold Nanoparticles. Int. J. Mol. Sci. 2019, 20, 4346. [Google Scholar] [CrossRef] [Green Version]
- Alivisatos, A.P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Compostella, F.; Pitirollo, O.; Silvestri, A.; Polito, L. Glyco-gold nanoparticles: Synthesis and applications. Beilstein J. Org. Chem. 2017, 13, 1008–1021. [Google Scholar] [CrossRef] [PubMed]
- Mahadevegowda, S.H.; Hou, S.; Ma, J.; Keogh, D.; Zhang, J.; Mallick, A.; Liu, X.W.; Duan, H.; Chan-Park, M.B. Raman-encoded, multivalent glycan-nanoconjugates for traceable specific binding and killing of bacteria. Biomater. Sci. 2018, 6, 1339–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, J.; García, I.; Liz-Marzán, L.M. Real-time dynamic SERS detection of galectin using glycan-decorated gold nanoparticles. Faraday Discuss. 2017, 205, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Wikipedia Colloidal Gold. Available online: https://en.wikipedia.org/wiki/Colloidal_gold (accessed on 6 April 2020).
- Sayhi, M.; Ouerghi, O.; Belgacem, K.; Arbi, M.; Tepeli, Y.; Ghram, A.; Anik, Ü.; Österlund, L.; Laouini, D.; Diouani, M.F. Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen printed carbon microelectrode. Biosens. Bioelectron. 2018, 107, 170–177. [Google Scholar] [CrossRef]
- García, I.; Mosquera, J.; Plou, J.; Liz-Marzán, L.M. Plasmonic Detection of Carbohydrate-Mediated Biological Events. Adv. Opt. Mater. 2018, 6, 1800680. [Google Scholar] [CrossRef] [Green Version]
- Toraskar, S.; Gade, M.; Sangabathuni, S.; Thulasiram, H.V.; Kikkeri, R. Exploring the Influence of Shapes and Heterogeneity of Glyco-Gold Nanoparticles on Bacterial Binding for Preventing Infections. ChemMedChem 2017, 12, 1116–1124. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, P.M.; Sangabathuni, S.; Murthy, R.V.; Paul, A.; Thulasiram, H.V.; Kikkeri, R. Assessing the effect of different shapes of glyco-gold nanoparticles on bacterial adhesion and infections. Chem. Commun. 2015, 51, 15669–15672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangabathuni, S.; Vasudeva Murthy, R.; Chaudhary, P.M.; Surve, M.; Banerjee, A.; Kikkeri, R. Glyco-gold nanoparticle shapes enhance carbohydrate-protein interactions in mammalian cells. Nanoscale 2016, 8, 12729–12735. [Google Scholar] [CrossRef] [PubMed]
- Otten, L.; Vlachou, D.; Richards, S.J.; Gibson, M.I. Glycan heterogeneity on gold nanoparticles increases lectin discrimination capacity in label-free multiplexed bioassays. Analyst 2016, 141, 4305–4312. [Google Scholar] [CrossRef] [Green Version]
- Selvaprakash, K.; Chen, Y.C. Functionalized gold nanoparticles as affinity nanoprobes for multiple lectins. Colloids Surf. B 2018, 162, 60–68. [Google Scholar] [CrossRef]
- Chen, W.-J.; Kandasamy, K.; Chen, Y.-C. Functional Gold Nanoparticles as Sensing Probes for Concanavalin A and as Imaging Agents for Cancer Cells. ACS Appl. Nano Mater. 2019, 2, 3348–3357. [Google Scholar] [CrossRef]
- Won, S.; Richards, S.-J.; Walker, M.; Gibson, M.I. Externally controllable glycan presentation on nanoparticle surfaces to modulate lectin recognition. Nanoscale Horiz. 2017, 2, 106–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Won, S.; Hindmarsh, S.; Gibson, M.I. Triggerable Multivalent Glyconanoparticles for Probing Carbohydrate–Carbohydrate Interactions. ACS Macro Lett. 2018, 7, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Paul, T.J.; Rübel, S.; Hildebrandt, M.; Strzelczyk, A.K.; Spormann, C.; Lindhorst, T.K.; Schmidt, S. Thermosensitive Display of Carbohydrate Ligands on Microgels for Switchable Binding of Proteins and Bacteria. ACS Appl. Mater. Interfaces 2019, 11, 26674–26683. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.; Priyadarshi, N.; Pinnaka, A.K.; Soni, S.; Deep, A.; Singhal, N.K. Glycoconjugates coated gold nanorods based novel biosensor for optical detection and photothermal ablation of food borne bacteria. Sens. Actuat. B Chem. 2019, 289, 207–215. [Google Scholar] [CrossRef]
- Kojori, H.S.; Ji, Y.; Paik, Y.; Braunschweig, A.B.; Kim, S.J. Monitoring interfacial lectin binding with nanomolar sensitivity using a plasmon field effect transistor. Nanoscale 2016, 8, 17357–17364. [Google Scholar] [CrossRef]
- Poonthiyil, V.; Lindhorst, T.K.; Golovko, V.B.; Fairbanks, A.J. Recent applications of click chemistry for the functionalization of gold nanoparticles and their conversion to glyco-gold nanoparticles. Beilstein J. Org. Chem. 2018, 14, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Zhang, L.; Liu, L.; Wang, B.; Bai, J.; Shen, C.; Chen, Y.; Fan, Q.; Chen, S.; Wu, W.; et al. Revealing Lectin–Sugar Interactions with a Single Au@Ag Nanocube. ACS Appl. Mater. Interfaces 2019, 11, 40944–40950. [Google Scholar] [CrossRef]
- Ashree, J.; Wang, Q.; Chao, Y. Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment. Front. Chem. Sci. Eng. 2020, 14, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Nurunnabi, M.; Cho, K.J.; Choi, J.S.; Huh, K.M.; Lee, Y.K. Targeted near-IR QDs-loaded micelles for cancer therapy and imaging. Biomaterials 2010, 31, 5436–5444. [Google Scholar] [CrossRef]
- Zrazhevskiy, P.; Gao, X. Quantum dot imaging platform for single-cell molecular profiling. Nat. Commun. 2013, 4, 1619. [Google Scholar] [CrossRef]
- Miao, P.; Han, K.; Tang, Y.; Wang, B.; Lin, T.; Cheng, W. Recent advances in carbon nanodots: Synthesis, properties and biomedical applications. Nanoscale 2015, 7, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.-W.; Qiao, S.; Xu, B.-Y.; Peng, X.; Xu, J.-J.; Chen, H.-Y. Dual-Functional Carbon Dots Pattern on Paper Chips for Fe3+ and Ferritin Analysis in Whole Blood. Anal. Chem. 2017, 89, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Meziani, M.J.; Dong, X.; Zhu, L.; Jones, L.P.; LeCroy, G.E.; Yang, F.; Wang, S.; Wang, P.; Zhao, Y.; Yang, L.; et al. Visible-Light-Activated Bactericidal Functions of Carbon “Quantum” Dots. ACS Appl. Mater. Interfaces 2016, 8, 10761–10766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-T.; Cao, L.; Luo, P.G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M.J.; Liu, Y.; Qi, G.; Sun, Y.-P. Carbon Dots for Optical Imaging in Vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Ohulchanskyy, T.Y.; Liu, R.; Koynov, K.; Wu, D.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P.N. Photoluminescent Carbon Dots as Biocompatible Nanoprobes for Targeting Cancer Cells in vitro. J. Phys. Chem. C 2010, 114, 12062–12068. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, P.; Zhai, X.; Tian, F.; Li, W.; Yang, J.; Liu, Y.; Wang, H.; Wang, W.; Liu, W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613. [Google Scholar] [CrossRef] [PubMed]
- Hudlikar, M.S.; Li, X.; Gagarinov, I.A.; Kolishetti, N.; Wolfert, M.A.; Boons, G.-J. Controlled Multi-functionalization Facilitates Targeted Delivery of Nanoparticles to Cancer Cells. Chem. Eur. J. 2016, 22, 1415–1423. [Google Scholar] [CrossRef] [Green Version]
- Ahn, K.-S.; Lim, K.R.; Jeong, D.; Lee, B.Y.; Kim, K.S.; Lee, W.-Y. Fluorescence energy transfer inhibition bioassay for cholera toxin based on galactose-stabilized gold nanoparticles and amine-terminated quantum dots. Microchem. J. 2016, 124, 9–14. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Liang, R.-P.; Huang, J.; Qiu, J.-D. Simultaneous Determination of Concanavalin A and Peanut Agglutinin by Dual-Color Quantum Dots. Anal. Chem. 2013, 85, 10969–10976. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; He, H.; Yang, H.; Wei, W. Simultaneous quadruple-channel optical transduction of a nanosensor for multiplexed qualitative and quantitative analysis of lectins. Chem. Commun. 2018, 54, 7754–7757. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Jie, X.; Wang, L.; Zhang, Y.; Wang, M.; Wei, W. An array consisting of glycosylated quantum dots conjugated to MoS2 nanosheets for fluorometric identification and quantitation of lectins and bacteria. Microchim. Acta 2018, 185, 512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qi, X.; Chai, J.; Wu, P.; Lv, X.; Cheng, S.; Li, X. Detection of glycan-binding proteins using glycan-functionalized quantum dots and gold nanoparticles. J. Carbohydr. Chem. 2018, 37, 199–209. [Google Scholar] [CrossRef]
- Palomo, V.; Cistrone, P.A.; Zhan, N.; Palui, G.; Mattoussi, H.; Dawson, P.E. Efficient Assembly of Quantum Dots with Homogenous Glycans Derived from Natural N-Linked Glycoproteins. Bioconjugate Chem. 2018, 29, 3144–3153. [Google Scholar] [CrossRef]
- Rouhanifard, S.H.; Xie, R.; Zhang, G.; Sun, X.; Chen, X.; Wu, P. Detection and Isolation of Dendritic Cells Using Lewis X-Functionalized Magnetic Nanoparticles. Biomacromolecules 2012, 13, 3039–3045. [Google Scholar] [CrossRef] [PubMed]
- Figdor, C.G.; de Vries, I.J.; Lesterhuis, W.J.; Melief, C.J. Dendritic cell immunotherapy: Mapping the way. Nat. Med. 2004, 10, 475–480. [Google Scholar] [CrossRef]
- Bhusal, N.; Shrestha, S.; Pote, N.; Alocilja, E.C. Nanoparticle-Based Biosensing of Tuberculosis, an Affordable and Practical Alternative to Current Methods. Biosensors 2018, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Li, X.; Li, W.; Liu, Z. Glycan-Imprinted Magnetic Nanoparticle-Based SELEX for Efficient Screening of Glycoprotein-Binding Aptamers. ACS Appl. Mater. Interfaces 2018, 10, 40918–40926. [Google Scholar] [CrossRef]
- Timmer, B.J.J.; Flos, M.A.; Jørgensen, L.M.; Proverbio, D.; Altun, S.; Ramström, O.; Aastrup, T.; Vincent, S.P. Spatially well-defined carbohydrate nanoplatforms: Synthesis, characterization and lectin interaction study. Chem. Commun. 2016, 52, 12326–12329. [Google Scholar] [CrossRef] [Green Version]
- Swift, T.A.; Duchi, M.; Hill, S.A.; Benito-Alifonso, D.; Harniman, R.L.; Sheikh, S.; Davis, S.A.; Seddon, A.M.; Whitney, H.M.; Galan, M.C.; et al. Surface functionalisation significantly changes the physical and electronic properties of carbon nano-dots. Nanoscale 2018, 10, 13908–13912. [Google Scholar] [CrossRef] [Green Version]
- Hill, S.A.; Benito-Alifonso, D.; Morgan, D.J.; Davis, S.A.; Berry, M.; Galan, M.C. Three-minute synthesis of sp3 nanocrystalline carbon dots as non-toxic fluorescent platforms for intracellular delivery. Nanoscale 2016, 8, 18630–18634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cid Martín, J.J.; Assali, M.; Fernández-García, E.; Valdivia, V.; Sánchez-Fernández, E.M.; Garcia Fernández, J.M.; Wellinger, R.E.; Fernández, I.; Khiar, N. Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination. J. Mater. Chem. B 2016, 4, 2028–2037. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ben, E.; Mena Barragán, T.; García de Dionisio, E.; Sánchez-Fernández, E.M.; Garcia Fernández, J.M.; Guillén-Mancina, E.; López-Lázaro, M.; Khiar, N. Mannose-coated polydiacetylene (PDA)-based nanomicelles: Synthesis, interaction with Concanavalin A and application in the water solubilization and delivery of hydrophobic molecules. J. Mater. Chem. B 2019, 7, 5930–5946. [Google Scholar] [CrossRef] [PubMed]
- Abellán-Flos, M.; Timmer, B.J.J.; Altun, S.; Aastrup, T.; Vincent, S.P.; Ramström, O. QCM sensing of multivalent interactions between lectins and well-defined glycosylated nanoplatforms. Biosens. Bioelectron. 2019, 139, 111328. [Google Scholar] [CrossRef] [PubMed]
- Kveton, F.; Blsakova, A.; Lorencova, L.; Jerigova, M.; Velic, D.; Blixt, O.; Jansson, B.; Kasak, P.; Tkac, J. A Graphene-Based Glycan Biosensor for Electrochemical Label-Free Detection of a Tumor-Associated Antibody. Sensors 2019, 19, 5409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blsakova, A.; Kveton, F.; Kasak, P.; Tkac, J. Antibodies against aberrant glycans as cancer biomarkers. Exp. Rev. Mol. Diagn. 2019, 19, 1057–1068. [Google Scholar] [CrossRef]
- Xie, D.; Feng, X.-Q.; Hu, X.-L.; Liu, L.; Ye, Z.; Cao, J.; Chen, G.-R.; He, X.-P.; Long, Y.-T. Probing Mannose-Binding Proteins That Express on Live Cells and Pathogens with a Diffusion-to-Surface Ratiometric Graphene Electrosensor. ACS Appl. Mater. Interfaces 2016, 8, 25137–25141. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, W.; Shen, J.; Jiang, Y.; Han, E.; Dong, X.; Huang, J. Carbohydrate derivative-functionalized biosensing toward highly sensitive electrochemical detection of cell surface glycan expression as cancer biomarker. Biosens. Bioelectron. 2015, 74, 291–298. [Google Scholar] [CrossRef]
- Cai, Z.; Sasmal, A.; Liu, X.; Asher, S.A. Responsive Photonic Crystal Carbohydrate Hydrogel Sensor Materials for Selective and Sensitive Lectin Protein Detection. ACS Sens. 2017, 2, 1474–1481. [Google Scholar] [CrossRef]
- Wahiba, M.; Feng, X.-Q.; Zang, Y.; James, T.D.; Li, J.; Chen, G.-R.; He, X.-P. A supramolecular pyrenyl glycoside-coated 2D MoS2 composite electrode for selective cell capture. Chem. Commun. 2016, 52, 11689–11692. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-X.; Tang, X.-Y.; Zhou, D.-M.; Zhang, W.; James, T.D.; He, X.-P.; Tian, H. A fluorogenic 2D glycosheet for the simultaneous identification of human- and avian-receptor specificity in influenza viruses. Mater. Horiz. 2017, 4, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Guan, C.; Zhao, Y.; Hou, Y.; Shan, G.; Yan, D.; Liu, Y. Glycosylated liposomes loading carbon dots for targeted recognition to HepG2 cells. Talanta 2018, 182, 314–323. [Google Scholar] [CrossRef]
- Hassanpour, S.; Baradaran, B.; Hejazi, M.; Hasanzadeh, M.; Mokhtarzadeh, A.; de la Guardia, M. Recent trends in rapid detection of influenza infections by bio and nanobiosensor. Trends Anal. Chem. 2018, 98, 201–215. [Google Scholar] [CrossRef]
- Hai, W.; Goda, T.; Takeuchi, H.; Yamaoka, S.; Horiguchi, Y.; Matsumoto, A.; Miyahara, Y. Human influenza virus detection using sialyllactose-functionalized organic electrochemical transistors. Sens. Actuat. B Chem. 2018, 260, 635–641. [Google Scholar] [CrossRef]
- Hideshima, S.; Hayashi, H.; Hinou, H.; Nambuya, S.; Kuroiwa, S.; Nakanishi, T.; Momma, T.; Nishimura, S.-I.; Sakoda, Y.; Osaka, T. Glycan-immobilized dual-channel field effect transistor biosensor for the rapid identification of pandemic influenza viral particles. Sci. Rep. 2019, 9, 11616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erofeev, A.S.; Gorelkin, P.V.; Kolesov, D.V.; Kiselev, G.A.; Dubrovin, E.V.; Yaminsky, I.V. Label-free sensitive detection of influenza virus using PZT discs with a synthetic sialylglycopolymer receptor layer. R. Soc. Open Sci. 2019, 6, 190255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, S.; Jia, T.W.; Yang, Y.; Chu, L.Q. BSA-Sugar Conjugates as Ideal Building Blocks for SPR-Based Glycan Biosensors. ACS Sens. 2017, 2, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Kveton, F.; Blsakova, A.; Hushegyi, A.; Damborsky, P.; Blixt, O.; Jansson, B.; Tkac, J. Optimization of the Small Glycan Presentation for Binding a Tumor-Associated Antibody: Application to the Construction of an Ultrasensitive Glycan Biosensor. Langmuir 2017, 33, 2709–2716. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Wang, W.W.; Chu, L.Q.; Jia, T.W.; Yang, Y. Direct immobilization of sugar probes on bovine serum albumin-coated gold substrate for the development of glycan biosensors. Biointerphases 2019, 14, 011003. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, T.-W.; Xu, F.; Li, W.; Tao, S.; Chu, L.-Q.; He, Y.; Li, Y.; Iyer, S.S.; Yu, P. Fluorescent Neomannosyl Bovine Serum Albumin as Efficient Probe for Mannose Receptor Imaging and MCF-7 Cancer Cell Targeting. ACS Appl. Nano Mater. 2018, 1, 1058–1065. [Google Scholar] [CrossRef]
- Heine, V.; Boesveld, S.; Pelantová, H.; Křen, V.; Trautwein, C.; Strnad, P.; Elling, L. Identifying Efficient Clostridium difficile Toxin a Binders with a Multivalent Neo-Glycoprotein Glycan Library. Bioconjug. Chem. 2019, 30, 2373–2383. [Google Scholar] [CrossRef] [PubMed]
Carbohydrate | Immobilization | Interface | Transducer | Analyte | LOD | Ref. |
---|---|---|---|---|---|---|
SA residues | thiol–Au–S bond | AuNPs | optical (96-well plate) | influenza viral strains | 8 HA titer | [69] |
lactose glycoconjugate | thiol 4-mercaptobenzoic acid | surface- enhanced Raman scattering | galectin 9 | 1.2 × 10−9 M | [78] | |
fetuin with SA | fetuin micelle | carbon SPE | influenza strain H9 N2 | 8 HAU titer | [80] | |
α-D-mannose and β-D-galactose dendrons | thiol | spherical AuNPs | optical (96-well plate) | E. coli strains ORN 178 | 200 μg·mL−1 | [82] |
rod-shaped AuNPs | 20 μg·mL−1 | |||||
galactose and mannose | click chemistry (PEG) | spherical AuNPs | 17 ± 2 μg·mL−1 | [83] | ||
rod-shaped AuNPs | 14 ± 2 μg·mL−1 | |||||
star-like AuNPs | 0.03 ± 0.01 μg·mL−1 | |||||
mannose | UV-irradiation | InGaZnO gate | FET | Con A | 10−10 M | [92] |
galactosamine and mannosamine | terminal thiol from RAFT agent | AuNPs | optical (96-well plate) | carbohydrate-binding proteins | down to nM | [85] |
ovalbumin with mannose, glucose and Galβ(1→4)GlcNAc | cysteines residues | MALDI | Con A | 3.9 nM | [86] | |
BanLec | 7.8 nM | |||||
ricin B | 31.3 nM | |||||
maltose | NaOH, 50 °C | optical (96-well plate) | Con A | 23 pM | [87] | |
battery of saccharides | terminal thiol from RAFT agent | battery of lectin and Ca2+ | μg·mL−1 | [88,89] | ||
4-aminophenyl α-D-mannopyranoside and 4-aminophenyl β-D-galactopyranoside | click chemistry (PEG) | Au nanorods | optical (near-infrared absorption and scattering in surface plasmon resonance) | E. coli | down to μM | [91] |
mannose | thiols | Ag-coated Au nanorods | optical (SPR) | Con A | down to nM | [77] |
2 nM | [94] |
Carbohydrate | Immobilization | Interface | Transducer | Analyte | LOD | Ref. |
---|---|---|---|---|---|---|
β-galactose derivatives | thiols | AuNPs and amino-terminated QDs | optical (fluorescence resonance energy transfer) | cholera toxin from V. cholerae | 280 pM | [105] |
glucosamine | amide coupling reaction | CdSe/ZnS QDs | optical (dual-color quantitative analysis) | Con A | 0.3 nM | [106] |
galactosamine | PNA | 0.18 nM | ||||
mannose, galactose, N-acetylglucosamine | thiols (metal–sulfur bond) | optical (fluorescence resonance energy transfer) | Con A | 4.6 nM | [107] | |
WGA | 9.7 nM | |||||
PNA | 8.9 nM | |||||
RCA120 | 5.7 nM | |||||
PSA | 4.6 nM | |||||
PBA-MoS2 + CdSe/ZnS QDs | optical | Con A | 3.7 | [108] | ||
PSA | 8.3 | |||||
PNA | 4.2 | |||||
RCA120 | 3.9 | |||||
E. coli | 87 CFU·mL−1 | |||||
Enterococcus faecium | 66 CFU·mL−1 | |||||
N-linked glycan terminated with sialic acid | covalent bioconjugation through oxime ligation | CdSe/ZnS QDs | optical (fluorescence resonance energy transfer—FRET) | SNA | undefined | [110] |
His-tag self-assembly | ||||||
α-mannose | thiols - | CdSe/ZnS QDs | optical (FRET) | Con A | 3 nM | [109] |
Carbohydrate | Immobilization | Interface | Transducer | Analyte | LOD | Ref. |
---|---|---|---|---|---|---|
Lewis x | polyacrylic acid + CuAAC chemistry | MNPs (Fe3O4 core) | magnetic field | dendritic cells | undefined | [111] |
N-glycans | boronate affinity controllable oriented surface imprinting | MNPs | systematic evolution of ligands by exponential enrichment | aptamers | <1 nM | [114] |
chitosan | click chemistry (PEG) | MNPs (Fe3O4 core) | optical (colorimetric biosensing assay) | acid-fast bacilli of M. tuberculosis | 102 CFU·mL−1 | [113] |
Carbohydrate | Immobilization | Interface | Transducer | Analyte | LOD | Ref. |
---|---|---|---|---|---|---|
thiomannosyl dimer | Au–S bond | Multi-walled carbon nanotube (MWCNT)/Au NPs | GCE electrode | lung cells | 10 cells·mL−1 | [124] |
liver cells | 40 cells·mL−1 | |||||
prostate cells | 15 cells·mL−1 | |||||
mannose | CuAAC chemistry | Borromean rings | mechanical (QCM) | Con A | KD = 147 nM | [115] |
Dodecaamine cages | KD = 1.21 μM | |||||
fullerenes | KD = 1.02 μM | |||||
glucose, mannose, galactose, maltose and lactose | amide-coupling reaction | CDs | optical | undefined | undefined | [116] |
lactose | click chemistry (PEG) | HeLa cells | [117] | |||
MDA cells | ||||||
mannose | amide-coupling reaction | SWCNTs | ELLA (96-well plate) | Con A | [118,119] | |
micelles | ||||||
CuAAC chemistry | Borromean rings | mechanical (QCM) | 152 nM | [120] | ||
dodecaamine cages | 3.68 μM | |||||
monovalent reference MR·1 M | KD = 10.9 mM | |||||
Tn antigen | amide-coupling reaction | BSA | GPOx SPE | GOD3-2C4 antibody | 10 aM | [121] |
DBA | 1 aM | |||||
mannose | click chemistry (PEG) | anthraquinone | GPOx SPE | Con A | down to nM | [123] |
macrophage M2 | undefined | |||||
E. coli MG1655 | undefined |
Carbohydrate | Immobilization | Interface | Transducer | Analyte | LOD | Ref. |
---|---|---|---|---|---|---|
lactose, galactose and mannose | amide-coupling reaction | hydrogels | optical (2D photonic crystals) | ricin | 75 nM | [125] |
jacalin | 230 nM | |||||
Con A | 38 nM | |||||
pyrenyl glycoside | click chemistry (PEG) | MoS2 | electrochemical (graphene SPE–DPV) | 373 nM | [126] | |
human hepatoma cancer cells | 840 cells·mL−1 | |||||
α-2,6-sialyllactose | MoS2 nanosheets | optical | influenza strain H1N1 | 0.8 HAU·mL−1 | [127] | |
influenza strain H7N9 | 1.4 HAU·mL−1 | |||||
α-2,3-sialyllactose | ||||||
influenza strain H10N8 | 0.4 HAU·mL−1 |
Carbohydrate | Immobilization | Interface | Transducer | Analyte | LOD | Ref. |
---|---|---|---|---|---|---|
mannose | squaric acid conjugation | gold + BSA | optical (SPR) | Con A | 1.8 nM | [133,135] |
Tn antigen | amide-coupling reaction | polycrystalline Au electrode | electrochemical (EIS) | GOD3-2C4 antibody | 270 aM | [134] |
polycrystalline Au electrode + HSA | 1.4 aM | |||||
40 glycan epitopes based on N-acetyllactosamine | squaric acid conjugation | BSA | microtiter plate | bacterial enterotoxins toxin A and B of C. difficile | down to nM | [137] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kveton, F.; Blsakova, A.; Kasak, P.; Tkac, J. Glycan Nanobiosensors. Nanomaterials 2020, 10, 1406. https://doi.org/10.3390/nano10071406
Kveton F, Blsakova A, Kasak P, Tkac J. Glycan Nanobiosensors. Nanomaterials. 2020; 10(7):1406. https://doi.org/10.3390/nano10071406
Chicago/Turabian StyleKveton, Filip, Anna Blsakova, Peter Kasak, and Jan Tkac. 2020. "Glycan Nanobiosensors" Nanomaterials 10, no. 7: 1406. https://doi.org/10.3390/nano10071406
APA StyleKveton, F., Blsakova, A., Kasak, P., & Tkac, J. (2020). Glycan Nanobiosensors. Nanomaterials, 10(7), 1406. https://doi.org/10.3390/nano10071406