Carbonate Micromotors for Treatment of Construction Effluents
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Methods
2.3. Preparation of CaCO3 Microspheres
2.4. Preparation of MnCO3 Microcubes
2.5. Preparation of Janus Structure by Acid Layer Coating
2.6. Preparation of Concrete Wash Water
2.7. Motion Studies of (CA@CaCO3) and (CA@MnCO3) Micromotors
2.8. Preparation of Anthocyanin Dye
2.9. Neutralization Experiments of Concrete Wash Water on Microscopic and Macroscopic Scale
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CWW | Concrete Wash Water |
XRD | X-ray Diffraction |
SEM | Scanning Electron Microscope |
FTIR | Fourier Transform Infrared spectroscopy |
CA | Citric acid |
JCPDS | Joint Committee on Powder Diffraction Standards |
POC | Proof of concept |
References
- Safdar, M.; Simmchen, J.; Jänis, J. Light-driven micro- and nanomotors for environmental remediation. Environ. Sci. Nano 2017, 4, 1602–1616. [Google Scholar] [CrossRef]
- Parmar, J.; Vilela, D.; Villa, K.; Wang, J.; Sanchez, S. Micro-and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 2018, 140, 9317–9331. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Pumera, M. Micro/Nanomotors for Water Purification. Chem. A Eur. J. 2019, 25, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Ali, I. New Generation Adsorbents for Water Treatment. Chem. Rev. 2012, 112, 5073–5091. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Jurado-Sanchez, B.; Sattayasamitsathit, S.; Gao, W.; Santos, L.; Fedorak, Y.; Singh, V.V.; Orozco, J.; Galarnyk, M.; Wang, J. Self-propelled activated carbon janus micromotors for efficient water purification. Small 2015, 11, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Orozco, J.; Mercante, L.A.; Pol, R.; Merkoçi, A. Graphene-based Janus micromotors for the dynamic removal of pollutants. J. Mater. Chem. A 2016, 4, 3371–3378. [Google Scholar] [CrossRef]
- Vilela, D.; Parmar, J.; Zeng, Y.; Zhao, Y.; Sanchez, S. Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water. Nano Lett. 2016, 16, 2860–2866. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Zhu, H.; Chen, H.; Feng, X.; Liu, R.; Huang, Z.; Shen, Q.; Ma, Y.; Wang, L. Eco-friendly porous iron(iii) oxide micromotors for efficient wastewater cleaning. New J. Chem. 2019, 43, 12594–12600. [Google Scholar] [CrossRef]
- Uygun, D.A.; Jurado-Sanchez, B.; Uygun, M.; Wang, J. Self-propelled chelation platforms for efficient removal of toxic metals. Environ. Sci. Nano 2016, 3, 559–566. [Google Scholar] [CrossRef]
- Mou, F.; Pan, D.; Chen, C.; Gao, Y.; Xu, L.; Guan, J. Magnetically Modulated Pot-Like MnFe2O4 Micromotors: Nanoparticle Assembly Fabrication and their Capability for Direct Oil Removal. Adv. Funct. Mater. 2015, 25, 6173–6181. [Google Scholar] [CrossRef]
- Guix, M.; Orozco, J.; Garcia, M.; Gao, W.; Sattayasamitsathit, S.; Merkoci, A.; Escarpa, A.; Wang, J. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 2012, 6, 4445–4451. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Simmchen, J. Review: Interactions of Active Colloids with Passive Tracers. Condens. Matter 2019, 4, 78. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Kaeppler, A.; Fischer, D.; Simmchen, J. Photocatalytic TiO2 Micromotors for Removal of Microplastics and Suspended Matter. ACS Appl. Mater. Interfaces 2019, 11, 32937–32944. [Google Scholar] [CrossRef] [PubMed]
- Fenton, H.J.H. LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894, 65, 899–910. [Google Scholar] [CrossRef] [Green Version]
- Soler, L.; Magdanz, V.; Fomin, V.M.; Sanchez, S.; Schmidt, O.G. Self-propelled micromotors for cleaning polluted water. ACS Nano 2013, 7, 9611–9620. [Google Scholar] [CrossRef] [PubMed]
- Parmar, J.; Villa, K.; Vilela, D.; Sanchez, S. Platinum-free cobalt ferrite based micromotors for antibiotic removal. Appl. Mater. Today 2017, 9, 605–611. [Google Scholar] [CrossRef]
- Richard, C.; Simmchen, J.; Eychmuller, A. Photocatalytic Iron Oxide Micro-Swimmers for Environmental Remediation. Z. Für Phys. Chem. 2018, 232, 747–758. [Google Scholar] [CrossRef]
- Maria-Hormigos, R.; Pacheco, M.; Jurado-Sanchez, B.; Escarpa, A. Carbon nanotubes-ferrite-manganese dioxide micromotors for advanced oxidation processes in water treatment. Environ. Sci. Nano 2018, 5, 2993–3003. [Google Scholar] [CrossRef]
- Li, J.; Singh, V.V.; Sattayasamitsathit, S.; Orozco, J.; Kaufmann, K.; Dong, R.; Gao, W.; Jurado-Sanchez, B.; Fedorak, Y.; Wang, J. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 2014, 8, 11118–11125. [Google Scholar] [CrossRef] [Green Version]
- Pourrahimi, A.M.; Villa, K.; Ying, Y.; Sofer, Z.; Pumera, M. ZnO/ZnO2/Pt Janus Micromotors Propulsion Mode Changes with Size and Interface Structure: Enhanced Nitroaromatic Explosives Degradation under Visible Light. ACS Appl. Mater. Interfaces 2018, 10, 42688–42697. [Google Scholar] [CrossRef] [PubMed]
- EPA United States Protection Agency. Stormwater Best Management Practice-Concrete Washout; EPA United States Protection Agency: Washington, DC, USA, 2012.
- Douglas, R. Reducing the Environmental Impact of Concrete by Knowledge-based Design and Utilization of Industrial Waste Materials. Available online: https://ec.europa.eu/environment/eco-innovation/projects/en/projects/ecocrete (accessed on 18 July 2020).
- Rodgers, L. Climate change: The massive CO2 emitter you may not know about. BBC News, 17 December 2018. [Google Scholar]
- Watts, J. Concrete: The most Destructive Material on Earth; Cities, The Guardian: London, UK, 2019. [Google Scholar]
- Greenspec. The Environmental Impacts of Concrete. Available online: https://www.greenspec.co.uk/building-design/environmental-impacts-of-concrete/ (accessed on 18 July 2020).
- Mohamed, A.M.; El Shorbagy, W.; Mohammed, I.; Abdel Gawad, E. Treatment of concrete wash wastewater from ready-mix concrete operations. Desalin. Water Treat. 2015, 53, 928–939. [Google Scholar] [CrossRef]
- Lauritzen, E. Demolition and Reuse of Concrete and Masonry. In Proceedings of the Third International RILEM Symposium, Odense, Denmark, 24–27 October 1993. [Google Scholar]
- Yelton, R. Treating Process Water. Available online: https://patentimages.storage.googleapis.com/5f/d8/a0/42f9b2670c6497/US7494586.pdf (accessed on 18 July 2020).
- Sukhorukov, G.B.; Volodkin, D.V.; Günther, A.M.; Petrov, A.I.; Shenoy, D.B.; Möhwald, H. Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J. Mater. Chem. 2004, 14, 2073–2081. [Google Scholar] [CrossRef]
- Imai, H.; Tochimoto, N.; Nishino, Y.; Takezawa, Y.; Oaki, Y. Oriented Nanocrystal Mosaic in Monodispersed CaCO3 Microspheres with Functional Organic Molecules. Cryst. Growth Des. 2012, 12, 876–882. [Google Scholar] [CrossRef]
- Zhu, H.; Stein, E.W.; Lu, Z.; Lvov, Y.M.; McShane, M.J. Synthesis of size-controlled monodisperse manganese carbonate microparticles as templates for uniform polyelectrolyte microcapsule formation. Chem. Mater. 2005, 17, 2323–2328. [Google Scholar] [CrossRef]
- Guix, M.; Meyer, A.K.; Koch, B.; Schmidt, O.G. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Mou, F.; Chen, C.; Ma, H.; Yin, Y.; Wu, Q.; Guan, J. Self-propelled micromotors driven by the magnesium-water reaction and their hemolytic propertiem. Angew. Chem. Int. Ed. 2013, 52, 7208–7212. [Google Scholar] [CrossRef]
- Gao, W.; Uygun, A.; Wang, J. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J. Am. Chem. Soc. 2012, 134, 897–900. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, P.; Simmchen, J. Interactions of different Janus particles with passive tracers. chemrXiv 2019. [Google Scholar] [CrossRef]
- Paxton, W.F.; Baker, P.T.; Kline, T.R.; Wang, Y.; Mallouk, T.E.; Sen, A. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 2006, 128, 14881–14888. [Google Scholar] [CrossRef]
- Brown, A.; Poon, W. Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matter 2014, 10, 4016–4027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castaneda-Ovando, A.; Pacheco-Hernandez, M.d.L.; Paez-Hernandez, M.E.; Rodriguez, J.A.; Galan-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Hessien, M.; Rashad, M.M.; Zaky, R.R.; Abdel-Aal, E.A.; El-Barawy, K.A. Controlling the synthesis conditions for silica nanosphere from semi-burned rice straw. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2009, 162, 14–21. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chattopadhyay, P.; Sharan, P.; Berndt, A.; Simmchen, J. Carbonate Micromotors for Treatment of Construction Effluents. Nanomaterials 2020, 10, 1408. https://doi.org/10.3390/nano10071408
Chattopadhyay P, Sharan P, Berndt A, Simmchen J. Carbonate Micromotors for Treatment of Construction Effluents. Nanomaterials. 2020; 10(7):1408. https://doi.org/10.3390/nano10071408
Chicago/Turabian StyleChattopadhyay, Purnesh, Priyanka Sharan, Andrej Berndt, and Juliane Simmchen. 2020. "Carbonate Micromotors for Treatment of Construction Effluents" Nanomaterials 10, no. 7: 1408. https://doi.org/10.3390/nano10071408
APA StyleChattopadhyay, P., Sharan, P., Berndt, A., & Simmchen, J. (2020). Carbonate Micromotors for Treatment of Construction Effluents. Nanomaterials, 10(7), 1408. https://doi.org/10.3390/nano10071408