Refractometric Sensitivity Enhancement of Weakly Tilted Fiber Bragg Grating Integrated with Black Phosphorus
Abstract
:1. Introduction
2. Theory, Simulations, Materials, and Methods
2.1. Theory
2.2. Simulations
2.3. Materials and Methods
3. Experiments and Results
3.1. Experimental Setup
3.2. The Variation of Optical Transmission Spectra for Weakly Tilted Fiber Bragg Grating (WTFBG) with Black Phosphorus (BP) Deposition
3.3. Refractometric Response Measurement for Bare and BP Coated with WTFBG
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, T.; Liu, K.; Jiang, J.; Xue, M.; Chang, P.; Liu, T. Temperature-insensitive refractive index sensor based on tilted moiré FBG with high resolution. Opt. Express 2017, 25, 14900–14909. [Google Scholar] [CrossRef] [PubMed]
- Jie, Z.; Dong, X.; Peng, Z.; Ji, J.; Su, H.; Shum, P.P. Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings. Appl. Phys. Lett. 2013, 103, 14. [Google Scholar]
- Voisin, V.; Pilate, J.; Damman, P.; Megret, P.; Caucheteur, C. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors. Biosens. Bioelectron. 2014, 51, 249–254. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, L.; Chen, X.; Bennion, I. Low Thermal Sensitivity Grating Devices Based on Ex-45° Tilting Structure Capable of Forward-Propagating Cladding Modes Coupling. J. Lightwave Tech. 2006, 24, 5087–5094. [Google Scholar] [CrossRef]
- Erdogan, T. Cladding-mode resonances in short- and long-period fiber grating filters. J. Opt. Soc. Am. A. 2000, 14, 1760–1773. [Google Scholar] [CrossRef]
- James, S.W.; Tatam, R.P. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 2003, 14. [Google Scholar] [CrossRef]
- Caucheteur, C.; Guo, T.; Liu, F.; Guan, B.O.; Albert, J. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun. 2016, 7, 13371. [Google Scholar] [CrossRef] [Green Version]
- Celebanska, A.; Chiniforooshan, Y.; Janik, M.; Mikulic, P.; Bock, W.J. Label-free cocaine aptasensor based on a long-period fiber grating. Opt. Lett. 2019, 44, 2482–2485. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S.; Biswas, P.; Chiavaioli, F.; Dey, T.K.; Basumallick, N.; Trono, C.; Giannetti, A.; Tombelli, S.; Baldini, F.; Bandyopadhyay, S. Long-period fiber grating: A specific design for biosensing applications. Appl. Opt. 2017, 56, 9846–9853. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Guan, B.O.; Albert, J. Tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 2016, 78, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Loyez, M.; Albert, J.; Caucheteur, C.; Wattiez, R. Cytokeratins Biosensing Using Tilted Fiber Gratings. Biosens. Bioelectron. 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Zhou, K.; Wang, C.; Zhao, Y.; Zhao, J.; Zhang, L. Temperature-calibrated high-precision refractometer using a tilted fiber Bragg grating. Opt. Lett. 2017, 25, 25910–25918. [Google Scholar] [CrossRef] [PubMed]
- Bobo, G.; Wenliang, Q.; Jie, Z.; Yanyan, Z.; Perry Ping, S.; Feng, L. Simple and compact reflective refractometer based on tilted fiber Bragg grating inscribed in thin-core fiber. Opt. Lett. 2014, 39, 22–25. [Google Scholar]
- Caucheteur, C.; Voisin, V.; Albert, J. Near-infrared grating-assisted SPR optical fiber sensors: Design rules for ultimate refractometric sensitivity. Opt. Express 2015, 23. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Lee, Y.; Koh, H.J.; Jung, H.; Kim, J.S.; Yoo, H.W.; Kim, J.; Jung, H.T. Superior Chemical Sensing Performance of Black Phosphorus: Comparison with MoS2 and Graphene. Adv. Mater. 2016, 28, 7020–7028. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Sun, Z.; Zhang, L.; Lv, J.; Yu, X.; Chen, X. Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing. Sens. Actuator B-Chem 2018, 257, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Luo, B.; Shi, S.; Zhao, M.; Lu, J.; Ye, L.; Zhong, N.; Tang, B.; Wang, X.; Wang, Y. Study on spectral and refractive index sensing characteristics of etched excessively tilted fiber gratings. Appl. Opt. 2018, 57, 2590–2596. [Google Scholar] [CrossRef]
- Luo, B.; Yan, Z.; Sun, Z.; Li, J.; Zhang, L. Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating. Opt. Express 2014, 22, 30571–30578. [Google Scholar] [CrossRef] [Green Version]
- Laffont, G.; Ferdinand, P. Tilt short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry. Meas. Sci. Technol. 2001, 12, 765. [Google Scholar] [CrossRef]
- Erdogan, T.; Sipe, J.E. Tilted fiber phase grating. J. Opt. Soc. Am. A 1996, 13, 296–313. [Google Scholar] [CrossRef]
- Macleod, H.A. Thin-Film Optical Filters; CRC press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Castellanos-Gomez, A. Black Phosphorus: Narrow Gap, Wide Applications. J. Phys. Chem. Lett. 2015, 6, 4280–4291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.C.; Ji, W.B.; Mamidala, V.; Chow, K.K.; Tjin, S.C. Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications. Sens. Actuator B-Chem. 2014, B196, 260–264. [Google Scholar] [CrossRef]
- Jiang, B.Q.; Xue, M.; Zhao, C.Y.; Mao, D.; Zhou K., M. Refractometer probe based on a reflective carbon nanotube-modified microfiber Bragg grating. Appl. Optics 2016, 55, 7037–7041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Cai, Q.; Xu, B.; Zhu, W.; Zhang, L.; Zhao, J.; Chen, X. Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing. Biosens. Bioelectron. 2017, 94, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liu, K.; Jiang, J.; Xu, T.; Wang, S.; Ma, J.; Chang, P.; Zhang, J.; Liu, T. Refractometric Sensitivity Enhancement of Weakly Tilted Fiber Bragg Grating Integrated with Black Phosphorus. Nanomaterials 2020, 10, 1423. https://doi.org/10.3390/nano10071423
Zhang Z, Liu K, Jiang J, Xu T, Wang S, Ma J, Chang P, Zhang J, Liu T. Refractometric Sensitivity Enhancement of Weakly Tilted Fiber Bragg Grating Integrated with Black Phosphorus. Nanomaterials. 2020; 10(7):1423. https://doi.org/10.3390/nano10071423
Chicago/Turabian StyleZhang, Zhao, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Jinying Ma, Pengxiang Chang, Jiahang Zhang, and Tiegen Liu. 2020. "Refractometric Sensitivity Enhancement of Weakly Tilted Fiber Bragg Grating Integrated with Black Phosphorus" Nanomaterials 10, no. 7: 1423. https://doi.org/10.3390/nano10071423
APA StyleZhang, Z., Liu, K., Jiang, J., Xu, T., Wang, S., Ma, J., Chang, P., Zhang, J., & Liu, T. (2020). Refractometric Sensitivity Enhancement of Weakly Tilted Fiber Bragg Grating Integrated with Black Phosphorus. Nanomaterials, 10(7), 1423. https://doi.org/10.3390/nano10071423