Synthesis of In Situ Photoinduced Halloysite-Polypyrrole@Silver Nanocomposite for the Potential Application in Humidity Sensors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bibi, F.; Guillaume, C.; Vena, A.; Gontard, N.; Sorli, B.J.S.; Physical, A.A. Wheat gluten, a bio-polymer layer to monitor relative humidity in food packaging: Electric and dielectric characterization. Sens. Actuators A Phys. 2016, 247, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Su, P.-G.; Shiu, W.-L.; Tsai, M.-S. Flexible humidity sensor based on Au nanoparticles/graphene oxide/thiolated silica sol–gel film. Sens. Actuators B Chem. 2015, 216, 467–475. [Google Scholar] [CrossRef]
- Tudorache, F.; Petrila, I.; Slatineanu, T.; Dumitrescu, A.M.; Iordan, A.R.; Dobromir, M.; Palamaru, M.N. Humidity sensor characteristics and electrical properties of Ni–Zn–Dy ferrite material prepared using different chelating-fuel agents. J. Mater. Sci. Mater. Electron. 2016, 27, 272–278. [Google Scholar] [CrossRef]
- Holze, R.; Stejskal, J. Recent trends and progress in research into structure and properties of polyaniline and polypyrrole—Topical Issue. Chem. Pap. 2013, 67, 769–770. [Google Scholar] [CrossRef]
- Turcu, R.; Darabont, A.; Nan, A.; Aldea, N.; Macovei, D.; Bica, D.; Vekas, L.; Pana, O.; Soran, M.; Koos, A.; et al. New polypyrrole-multiwall carbon nanotubes hybrid materials. J. Optoelectron. Adv. Mater. 2006, 8, 643–647. [Google Scholar]
- Domínguez-Renedo, O.; Navarro-Cuñado, A.M.; Arnáiz-Lozano, V.; Alonso-Lomillo, M.A. Molecularly imprinted polypyrrole based electrochemical sensor for selective determination of 4-ethylphenol. Talanta 2020, 207, 120351. [Google Scholar] [CrossRef]
- Qi, R.; Lin, X.; Dai, J.; Zhao, H.; Liu, S.; Fei, T.; Zhang, T. Humidity sensors based on MCM-41/polypyrrole hybrid film via in-situ polymerization. Sens. Actuators B Chem. 2018, 277, 584–590. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, Y.; Wang, C. Recent advances in self-actuation and self-sensing materials: State of the art and future perspectives. Talanta 2020, 212, 120808. [Google Scholar] [CrossRef]
- Nazar, R. Conductive Photopolymers: In Situ Synthesis of Metal nanoparticles. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2020. [Google Scholar]
- Li, X.; Zhu, M.; Dai, B. AuCl3 on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts. Appl. Catal. B Environ. 2013, 142, 234–240. [Google Scholar] [CrossRef]
- Jlassi, K.; Singh, A.; Aswal, D.K.; Losno, R.; Benna-Zayani, M.; Chehimi, M.M. Novel, ternary clay/polypyrrole/silver hybrid materials through in situ photopolymerization. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 193–199. [Google Scholar] [CrossRef]
- Zivic, N.; Kuroishi, P.K.; Dumur, F.; Gigmes, D.; Dove, A.P.; Sardon, H. Recent advances and challenges in the design of organic photoacid and photobase generators for polymerizations. Angew. Chem. Int. Ed. 2019, 58, 10410–10422. [Google Scholar] [CrossRef] [PubMed]
- Jlassi, K.; Chandran, S.; Mičušik, M.; Benna-Zayani, M.; Yagci, Y.; Thomas, S.; Chehimi, M.M. Poly (glycidyl methacrylate)-grafted clay nanofiller for highly transparent and mechanically robust epoxy composites. Eur. Polym. J. 2015, 72, 89–101. [Google Scholar] [CrossRef]
- Du, M.; Guo, B.; Jia, D. Newly emerging applications of halloysite nanotubes: A review. Polym. Int. 2010, 59, 574–582. [Google Scholar] [CrossRef]
- Ismail, H.; Pasbakhsh, P.; Fauzi, M.A.; Bakar, A.A. Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym. Test. 2008, 27, 841–850. [Google Scholar] [CrossRef]
- Ferrante, F.; Armata, N.; Cavallaro, G.; Lazzara, G. Adsorption studies of molecules on the halloysite surfaces: A computational and experimental investigation. J. Phys. Chem. C 2017, 121, 2951–2958. [Google Scholar] [CrossRef]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Hydrophobically modified halloysite nanotubes as reverse micelles for water-in-oil emulsion. Langmuir 2015, 31, 7472–7478. [Google Scholar] [CrossRef]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Sanzillo, V. Modified halloysite nanotubes: Nanoarchitectures for enhancing the capture of oils from vapor and liquid phases. ACS Appl. Mater. Interfaces 2014, 6, 606–612. [Google Scholar] [CrossRef] [Green Version]
- Saad, A.; Cabet, E.; Lilienbaum, A.; Hamadi, S.; Abderrabba, M.; Chehimi, M.M. Polypyrrole/Ag/mesoporous silica nanocomposite particles: Design by photopolymerization in aqueous medium and antibacterial activity. J. Taiwan Inst. Chem. Eng. 2017, 80, 1022–1030. [Google Scholar] [CrossRef]
- Pandey, N.K.; Tiwari, K.; Roy, A.; Mishra, A.; Govindan, A. Ag-Loaded WO3 Ceramic Nanomaterials: Characterization and Moisture Sensing Studies. Int. J. Appl. Ceram. Technol. 2013, 10, 150–159. [Google Scholar] [CrossRef]
- Mallick, S.; Ahmad, Z.; Touati, F.; Shakoor, R. Improvement of humidity sensing properties of PVDF-TiO2 nanocomposite films using acetone etching. Sens. Actuators B Chem. 2019, 288, 408–413. [Google Scholar] [CrossRef]
- Jlassi, K.; Benna-Zayani, M.; Chehimi, M.M.; Yagci, Y. Efficient photoinduced In situ preparation of clay/poly (glycidyl methacrylate) nanocomposites using hydrogen-donor silane. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 800–808. [Google Scholar] [CrossRef]
- Mousli, F.; Snoussi, Y.; Khalil, A.M.; Jlassi, K.; Mekki, A.; Chehimi, M.M. Surface Modification of Polymeric Substrates with Photo-and Sonochemically Designed Macromolecular Grafts. Surf. Modif. Polym. Methods Appl. 2019, 273–315. [Google Scholar]
- Zuo, S.; Liu, W.; Yao, C.; Li, X.; Kong, Y.; Liu, X.; Mao, H.; Li, Y. Preparation of polyaniline–polypyrrole binary composite nanotube using halloysite as hard-template and its characterization. Chem. Eng. J. 2013, 228, 1092–1097. [Google Scholar] [CrossRef]
- Yang, C.; Liu, P.; Zhao, Y. Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage. Electrochim. Acta 2010, 55, 6857–6864. [Google Scholar] [CrossRef]
- Liu, Y.-C. Characteristics of vibration modes of polypyrrole on surface-enhanced Raman scattering spectra. J. Electroanal. Chem. 2004, 571, 255–264. [Google Scholar] [CrossRef]
- Li, M.; Wei, Z.; Jiang, L. Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. J. Mater. Chem. 2008, 18, 2276–2280. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Hwang, B.-J. Identification of oxidized polypyrrole on Raman spectrum. Synth. Met. 2000, 113, 203–207. [Google Scholar] [CrossRef]
- Ballav, N.; Choi, H.J.; Mishra, S.B.; Maity, A. Polypyrrole-coated halloysite nanotube clay nanocomposite: Synthesis, characterization and Cr (VI) adsorption behaviour. Appl. Clay Sci. 2014, 102, 60–70. [Google Scholar] [CrossRef]
- Panja, S.; Chaudhuri, I.; Khanra, K.; Bhattacharyya, N. Biological application of green silver nanoparticle synthesized from leaf extract of Rauvolfia serpentina Benth. Asian Pac. J. Trop. Dis. 2016, 6, 549–556. [Google Scholar] [CrossRef]
- Jlassi, K.; Sliem, M.H.; Eid, K.; Krupa, I.; Chehimi, M.M.; Abdullah, A.M. Novel Enzyme-Free Multifunctional Bentonite/Polypyrrole/Silver Nanocomposite Sensor for Hydrogen Peroxide Detection over a Wide pH Range. Sensors 2019, 19, 4442. [Google Scholar] [CrossRef] [Green Version]
- Mravčáková, M.; Omastová, M.; Olejníková, K.; Pukánszky, B.; Chehimi, M.M. The preparation and properties of sodium and organomodified-montmorillonite/polypyrrole composites: A comparative study. Synth. Met. 2007, 157, 347–357. [Google Scholar] [CrossRef]
- Xiao, C.; Shi, P.; Yan, W.; Chen, L.; Qian, L.; Kim, S.H. Thickness and Structure of Adsorbed Water Layer and Effects on Adhesion and Friction at Nanoasperity Contact. Colloids Interfaces 2019, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Kabir, L.; Mandal, A.R.; Mandal, S. Humidity-sensing properties of conducting polypyrrole-silver nanocomposites. J.Exp Nanosci. 2008, 3, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Sakai, Y.; Sadaoka, Y.; Matsuguchi, M. Humidity sensors based on polymer thin films. Sens. Actuators B Chem. 1996, 35, 85–90. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Yun, S.; Kim, J. Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sens. Actuators A Phys. 2011, 165, 194–199. [Google Scholar] [CrossRef]
- Su, P.-G.; Wang, C.-P. Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino) propyl] trimethyl ammonium chloride composite materials. Sens. Actuators B Chem. 2008, 129, 538–543. [Google Scholar] [CrossRef]
- Najjar, R.; Nematdoust, S. A resistive-type humidity sensor based on polypyrrole and ZnO nanoparticles: Hybrid polymers vis-a-vis nanocomposites. RSC Adv. 2016, 6, 112129–112139. [Google Scholar] [CrossRef]
Samples | O | Al | Si | C | Ag | N |
---|---|---|---|---|---|---|
HNT | 43.4 | 16.6 | 14.5 | 25 | 0 | 0 |
HNT-DMA | 46.6 | 9.5 | 7.5 | 34 | 0 | 1.7 |
HNT-DMA-PPy@Ag | 45 | 10.6 | 8.7 | 33 | 0.6 | 2.7 |
Materials | Si | Al | O | C | N | N(NO3) | Ag | Na | K | Ca |
---|---|---|---|---|---|---|---|---|---|---|
HNT | 16.5 | 7.9 | 62.3 | 2.10 | - | - | - | 2.80 | 0.11 | 0.50 |
HNT-NH2* | 24.4 | 12.0 | 59.2 | 9.8 | 1.50 | - | - | 0.62 | 0.67 | 0.92 |
HNT-NH2-PPy@Ag | 14.7 | 6.7 | 36.2 | 38.0 | 5.28 | 0.13 | 2.10 | traces | 0.30 | 0.30 |
Sample Type | 0.25 w/W% HNT-DMA-PPy@Ag film | 0.5 w/W% HNT-DMA-PPy@Ag film | 1 w/W% HNT-DMA-PPy@Ag film |
---|---|---|---|
Contact angle image | |||
Contact angle | 68.2° | 46.6° | 37° |
Material | Experimental details | Sensing Range | Response/Recovery time | Reference |
---|---|---|---|---|
Cellulose–PPy nanocomposite | Chemical oxidative polymerization. Time = 30 min at RT CuCl2/Py: 10 mL/5 vol% Regenerated cellulose films emerged infiltrate of PPy | 30–90%RH | ∼418 s | [36] |
TiO2 NPs/PPy/PMAPTAC) | Photopolymerization Time = 20 min under UV light at RT AgNO3/Pyrrole/TiO2 NP PMAPTAC/AIBN PET substrate | 11–90%RH | 30–45 s | [37] |
PPy-ZnO nanocomposite | Chemical oxidative polymerization. Time = 60 min at 70 °C PPy-ZnO NP PPy/ZnO: 50 mg/11.8 mg | 11–75%RH | 180–60 s | [38] |
HNT-DMA-PPy@Ag | In situ photopolymerization Time = 20 min at RT HNT/AgNO3/Py = 1 g/0.1 M/0.5 M | 10–90%RH | 30–35 s | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jlassi, K.; Mallick, S.; Mutahir, H.; Ahmad, Z.; Touati, F. Synthesis of In Situ Photoinduced Halloysite-Polypyrrole@Silver Nanocomposite for the Potential Application in Humidity Sensors. Nanomaterials 2020, 10, 1426. https://doi.org/10.3390/nano10071426
Jlassi K, Mallick S, Mutahir H, Ahmad Z, Touati F. Synthesis of In Situ Photoinduced Halloysite-Polypyrrole@Silver Nanocomposite for the Potential Application in Humidity Sensors. Nanomaterials. 2020; 10(7):1426. https://doi.org/10.3390/nano10071426
Chicago/Turabian StyleJlassi, Khouloud, Shoaib Mallick, Hafsa Mutahir, Zubair Ahmad, and Farid Touati. 2020. "Synthesis of In Situ Photoinduced Halloysite-Polypyrrole@Silver Nanocomposite for the Potential Application in Humidity Sensors" Nanomaterials 10, no. 7: 1426. https://doi.org/10.3390/nano10071426
APA StyleJlassi, K., Mallick, S., Mutahir, H., Ahmad, Z., & Touati, F. (2020). Synthesis of In Situ Photoinduced Halloysite-Polypyrrole@Silver Nanocomposite for the Potential Application in Humidity Sensors. Nanomaterials, 10(7), 1426. https://doi.org/10.3390/nano10071426