Forward and Backward Unidirectional Scattering by the Core-Shell Nanocube Dimer with Balanced Gain and Loss
Abstract
:1. Introduction
2. Theory
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Halas, N.J.; Lal, S.; Chang, W.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961. [Google Scholar] [CrossRef] [PubMed]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Nanofocusing of electromagnetic radiation. Nat. Photonics 2014, 8, 13–22. [Google Scholar] [CrossRef]
- Mandal, P.; Sharma, S. Progress in plasmonic solar cell efficiency improvement: A status review. Renew. Sustain. Energy Rev. 2016, 65, 537–552. [Google Scholar] [CrossRef]
- Groep, J.V.D.; Coenen, T.; Mann, S.A.; Polman, A. Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles. Optica 2016, 3, 93–99. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Liu, Q.; Wang, F.; Sun, Z.; Tao, S.; Mu, H.; Chu, P.K. Analysis of a Surface Plasmon Resonance Probe Based on Photonic Crystal Fibers for Low Refractive Index Detection. Plasmonics 2018, 13, 779–784. [Google Scholar]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef]
- Jahani, S.; Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 2016, 11, 23–36. [Google Scholar] [CrossRef]
- Alaee, R.; Albooyeh, M.; Yazdi, M.; Komjani, N.; Simovski, C.; Lederer, F.; Rockstuhl, C. Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications. Phys. Rev. B 2015, 91, 115119. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zenin, V.A.; Bozhevolnyi, S.I. Anapole-Assisted Strong Field Enhancement in Individual All-Dielectric Nanostructures. ACS Photonics 2018, 5, 1960–1966. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Y.; Xia, Y. Metal nanoparticles with gain toward singlemolecule detection by surface-enhanced raman scattering. Nano Lett. 2010, 10, 243–249. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.W.; Wang, F.M.; Su, W.Q.; Yang, L.; Lv, J.W.; Fu, G.L.; Li, X.L.; Liu, Q.; Sun, T.; et al. Surface Plasmon Resonance (SPR) Infrared Sensor Based on D-Shape Photonic Crystal Fibers with ITO Coatings. Opt. Commun. 2020, 464, 125496. [Google Scholar] [CrossRef]
- Alaeian, H.; Dionne, J.A. Controlling electric, magnetic, and chiral dipolar emission with PT-symmetric potentials. Phys. Rev. B 2015, 91, 245108. [Google Scholar] [CrossRef] [Green Version]
- Baum, B.; Alaeian, H.; Dionne, J. A parity-time symmetric coherent plasmonic absorber-amplifier. J. Appl. Phys. 2015, 117, 063106. [Google Scholar] [CrossRef]
- Chen, X.; Yue, W.; Tao, R.; Yao, P.; Liu, W. Scattering phenomenon of PT-symmetric dielectric-nanosphere structure. Phys. Rev. A 2016, 94, 053829. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Zhang, Z.Z.; Yuan, J.Q.; Wang, W.; Wang, L.Q.; Li, Z.X.; Xue, R.D.; Chen, J. Parity-time symmetry in periodically curved optical waveguides. Opt. Express 2018, 26, 27141–27152. [Google Scholar] [CrossRef]
- Benisty, H.; Lupu, A.; Degiron, A. Transverse periodic PT symmetry for modal demultiplexing in optical waveguides. Phys. Rev. A At. Mol. Opt. Phys. 2015, 91, 053825. [Google Scholar] [CrossRef]
- Regensburger, A.; Bersch, C.; Miri, M.A.; Onishchukov, G.; Christodoulides, D.N.; Peschel, U. Parity–time synthetic photonic lattices. Nature 2012, 488, 167–171. [Google Scholar] [CrossRef]
- Miri, M.A.; Eftekhar, M.A.; Facao, M.; Abouraddy, A.F.; Bakry, A.; Razvi MA, N.; Alshahrie, A.; Alu, A.; Christodoulides, D.N. Scattering properties of PT-symmetric objects. J. Opt. 2016, 18, 075104. [Google Scholar] [CrossRef] [Green Version]
- Chong, Y.D.; Ge, L.; Stone, A.D. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 2010, 106, 093902. [Google Scholar] [CrossRef] [Green Version]
- Schomerus, H. From scattering theory to complex wave dynamics in non-Hermitian PT-symmetric resonators. Phil. Trans. R. Soc. A 2013, 371, 20120194. [Google Scholar] [CrossRef] [Green Version]
- Manjavacas, A. Anisotropic optical response of nanostructures with balanced gain and loss. ACS Photonics 2016, 3, 1301. [Google Scholar] [CrossRef]
- Chaowei, X.; Xiaoming, Z.; Kaiyang, C.; Xiaobing, S.; Quan, L.; Zeyong, W.; Chao, W.; Hongqiang, L. Tunable Unidirectivity of Metal-Dielectric-Metal Plasmonic Nanoantennas with PT-Symmetric Potentials. Front. Phys. 2019, 7, 161. [Google Scholar]
- Kang, H.; Buchman, J.T.; Rodriguez, R.S.; Ring, H.L.; He, J.; Bantz, K.C.; Haynes, C.L. Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chem. Rev. 2018, 119, 664. [Google Scholar] [CrossRef] [PubMed]
- Rycenga, M.; Cobley, C.M.; Zeng, J.; Li, W.; Moran, C.H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011, 111, 3669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frederix, F.; Friedt, J.M.; Choi, K.H.; Laureyn, W.; Campitelli, A.; Mondelaers, D.; Maes, G.; Borghs, G. Biosensing Based on Light Absorption of Nanoscaled Gold and Silver Particles. Anal. Chem. 2003, 75, 6894. [Google Scholar] [CrossRef]
- Noginov, M.A.; Zhu1, G.; Belgrave, A.M.; Bakker, R.; Shalaev, V.M.; Narimanov, E.E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Demonstration of a spaser-based nanolaser. Nature 2009, 460, 1110. [Google Scholar] [CrossRef]
- Carrere, H.; Marie, X.; Lombez, L.; Amand, T. Optical gain of InGaAsN/InP quantum wells for laser applications. Appl. Phys. Lett. 2006, 89, 181115. [Google Scholar] [CrossRef]
- Jin, W.; Khandekar, C.; Pick, A.; Polimeridis, A.G.; Rodriguez, A.W. Amplified and directional spontaneous emission from arbitrary composite bodies: A self-consistent treatment of Purcell effect below threshold. Phys. Rev. B Condens. Matter Mater. Phys. 2016, 93, 125415. [Google Scholar] [CrossRef] [Green Version]
- Sanders, S.; Manjavacas, A. Nanoantennas with balanced gain and loss. Nanophotonics 2020, 9, 392. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- COMSOL Multiphysics 5.1. Available online: http://www.comsol.com (accessed on 20 June 2020).
- Stockman, M.I. Spasers explained. Nat. Photonics 2008, 2, 327. [Google Scholar] [CrossRef]
- Stockman, M.I. Spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 2010, 12, 024004. [Google Scholar] [CrossRef] [Green Version]
- Kraus, J.D.; Marhefka, R.J. Antenna for All Applications, 3rd ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Pakizeh, T.; Käll, M. Unidirectional Ultracompact Optical Nanoantennas. Nano Lett. 2009, 9, 2343–2349. [Google Scholar] [CrossRef]
- Alavi, L.S.H.; Pakizeh, T. Color-switched directional ultracompact optical nanoantennas. J. Opt. Soc. Am. B 2012, 29, 1361–1366. [Google Scholar] [CrossRef]
- Rolly, B.; Stout, B.; Bidault, S.; Bonod, N. Crucial role of the emitter-particle distance on the directivity of optical antennas. Opt. Lett. 2011, 36, 3368–3370. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Käll, M. Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates. Phys. Rev. Lett. 2002, 89, 246802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christodoulides, D.; Yang, J. Parity-Time Symmetry and Its Applications; Springer: Singapore, 2018. [Google Scholar]
- Krasnok, A.E.; Slobozhanyuk, A.P.; Simovski, C.R.; Tretyakov, S.A.; Poddubny, A.N.; Miroshnichenko, A.E.; Kivshar, Y.S.; Belov, P.A. Antenna model of the Purcell effect. Sci. Rep. 2015, 5, 12956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, F.; Yan, M.; Thylen, L.; Qiu, M.; Wosinski, L. Whispering Gallery Mode Nanodisk Resonator based on Layered Metal-Dielectric Waveguide. Opt. Express 2014, 22, 8490–8502. [Google Scholar] [CrossRef]
- Poddubny, A.N.; Belov, P.A.; Kivshar, Y.S. Spontaneous radiation of a finite-size dipole emitter in hyperbolic media. Phys. Rev. A 2011, 84, 3242–3244. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wiley, B.; Li, Z.Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X.; Xia, Y. Gold Nanocages: Engineering Their Structure for Biomedical Applications. Adv. Mater. 2005, 17, 2255. [Google Scholar] [CrossRef]
- Kenyon, A.J.; Chryssou, C.E.; Pitt, C.W.; Shimizu-Iwayama, T.; Hole, D.E.; Sharma, N.; Humphreys, C.J. Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms. J. Appl. Phys. 2002, 91, 367. [Google Scholar] [CrossRef]
- Pisignano, D.; Anni, M.; Gigli, G.; Cingolani, R.; Zavelani-Rossi, M.; Lanzani, G.; Barbarella, G.; Favaretto, L. Amplified spontaneous emission and efficient tunable laser emission from a substituted thiophene-based oligomer. Appl. Phys. Lett. 2002, 81, 3534. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Zhang, X.; Yu, X.; Mu, H.; Liu, Q.; Liu, C.; Sun, T.; Chu, P.K. Forward and Backward Unidirectional Scattering by the Core-Shell Nanocube Dimer with Balanced Gain and Loss. Nanomaterials 2020, 10, 1440. https://doi.org/10.3390/nano10081440
Lv J, Zhang X, Yu X, Mu H, Liu Q, Liu C, Sun T, Chu PK. Forward and Backward Unidirectional Scattering by the Core-Shell Nanocube Dimer with Balanced Gain and Loss. Nanomaterials. 2020; 10(8):1440. https://doi.org/10.3390/nano10081440
Chicago/Turabian StyleLv, Jingwei, Xiaoming Zhang, Xuntao Yu, Haiwei Mu, Qiang Liu, Chao Liu, Tao Sun, and Paul K. Chu. 2020. "Forward and Backward Unidirectional Scattering by the Core-Shell Nanocube Dimer with Balanced Gain and Loss" Nanomaterials 10, no. 8: 1440. https://doi.org/10.3390/nano10081440
APA StyleLv, J., Zhang, X., Yu, X., Mu, H., Liu, Q., Liu, C., Sun, T., & Chu, P. K. (2020). Forward and Backward Unidirectional Scattering by the Core-Shell Nanocube Dimer with Balanced Gain and Loss. Nanomaterials, 10(8), 1440. https://doi.org/10.3390/nano10081440