Exfoliated Clay Decorated with Magnetic Iron Nanoparticles for Crystal Violet Adsorption: Modeling and Physicochemical Interpretation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MNP/CTAB‒EC Adsorbent
2.3. Sample Characterization
2.4. CV Adsorption Kinetics Using MNP/CTAB‒EC
2.5. CV Adsorption Equilibrium
2.6. Traditional Modeling for CV Adsorption Onto MNP/CTAB‒EC
2.7. Advanced Modeling for CV Adsorption Onto MNP/CTAB‒EC
2.8. Regeneration of MNP/CTAB‒EC
3. Results and Discussions
3.1. Characterization of MNP/CTAB‒EC
3.2. pHZCP of MNP/CTAB‒EC and pH Effect
3.3. Interaction Time Effect on CV Uptake by MNP/CTAB‒EC
3.4. CV Adsorption Kinetics
3.5. CV Adsorption Isotherms
Advanced Statistical Physics Models (ASPM)
- Scenario 1: n and N2 are free adjustable parameters (i.e., multilayer).
- Scenario 2: n is a free adjustable parameter and N2 = zero (fixed) (i.e., a monolayer).
- Scenario 3: n is a free adjustable parameter and N2 = 1 (fixed) (i.e., double‒layer)
- Scenario 4: n is a free adjustable parameter and N2 = 2 (fixed) (i.e., triple‒layer)
- Scenario 5: n = unity (fixed) and N2 = zero (fixed) (i.e., Langmuir model)
3.6. Steric Parameters
3.6.1. The n Parameter
- ❖ Case 1 (n < 0.5): This scenario indicated that the CV molecule can interact with at least two adsorption sites of MNP/CTAB‒EC (i.e., a parallel adsorption orientation).
- ❖ Case 2 (0.5 < n < 1): This condition corresponded to parallel and non‒parallel orientations (mixed orientation with different percentages) for the adsorption of CV molecules.
- ❖ Case 3 (n > 1): This scenario indicated that CV molecules can interact with one active site of MNP/CTAB-EC (i.e., non-parallel adsorption orientation).
3.6.2. The NM Parameter
3.6.3. Total Number of the Adsorbed CV Layers (Nt = 1+N2)
3.6.4. Adsorption Capacity of CV (Qsat = n. NM. Nt) at Saturation
3.7. CV Adsorption Energy (ΔE)
3.8. Reusability Study
3.9. Comparison with Other Adsorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Wang, G.; Zhai, K.; He, C.; Li, Q.; Guo, P. Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 28–35. [Google Scholar] [CrossRef]
- Mobarak, M.; Mohamed, E.A.; Selim, A.Q.; Sellaoui, L.; Ben Lamine, A.; Erto, A.; Bonilla-Petriciolete, A.; Seliem, M.K. Surfactant–modified serpentine for fluoride and Cr(VI) adsorption in single and binary systems: Experimental studies and theoretical modeling. Chem. Eng. J. 2019, 360, 333–343. [Google Scholar] [CrossRef]
- Saffari, R.; Shariatinia, Z.; Jourshabani, M. Synthesis and photocatalytic degradation activities of phosphorus containing ZnO microparticles under visible light irradiation for water treatment applications. Environ. Pollut. 2020, 259, 113902. [Google Scholar] [CrossRef]
- Seliem, M.K.; Barczak, M.; Anastopoulos, I.; Giannakoudakis, D.A. A Novel nanocomposite of activated serpentine mineral decorated with magnetic nanoparticles for rapid and elective adsorption of hazardous cationic dyes: Kinetics and Equilibrium Studies. Nanomaterials 2020, 10, 684. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, R. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J. Hazard. Mater. 2009, 171, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Tyagi, I.; Gupta, V.K.; Mashhadi, S.; Ghasemi, M. Kinetics and thermodynamics of malachite green dye removal from aqueous phase using iron nanoparticles loaded on ash. Mol. Liq. J. 2016, 223, 1340–1347. [Google Scholar] [CrossRef]
- Mobarak, M.; Selim, A.Q.; Mohamed, E.; Seliem, M.K. A superior adsorbent of CTAB/H2O2 solution−modified organic carbon rich-clay for hexavalent chromium and methyl orange uptake from solutions. Mol. Liq. J. 2018, 259, 384–397. [Google Scholar] [CrossRef]
- Chang, J.; Ma, J.; Ma, Q.; Zhang, D.; Qiaoa, N.; Hu, M.; Ma, H. Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Appl. Clay Sci. 2016, 119, 132–140. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Selim, A.Q.; Ahmed, S.A.; Sellaou, L.; Bonilla-Petriciolet, A.; Ertoe, A.; Li, Z.; Li, Y.; Seliem, M.K. H2O2–activated anthracite impregnated with chitosan as a novel composite for Cr(VI) and methyl orange adsorption in single–compound and binary systems: Modeling and mechanism interpretation. Chem. Eng. J. 2020, 380, 122445. [Google Scholar] [CrossRef]
- Tang, H.; Li, W.; Jiang, H.; Lin, R.; Wang, Z.; Wu, J.; He, G.; Shearing, P.R.; Brett, D.J.L. ZIF-8-derived hollow carbon for efficient adsorption of antibiotics. Nanomaterials 2019, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Seliem, M.K.; Mobarak, M. Cr(VI) uptake by a new adsorbent of CTAB–modified carbonized coal: Experimental and advanced statistical physics studies. Mol. Liq. J. 2019, 294, 111676. [Google Scholar] [CrossRef]
- Kumar, R.; Barakat, M.A.; Taleb, M.; Seliem, M.K. A recyclable multifunctional graphene oxide/SiO2@polyaniline microspheres composite for Cu(II) and Cr(VI) decontamination from wastewater. J. Clean. Prod. 2020, 268, 122290. [Google Scholar] [CrossRef]
- Selim, A.Q.; Sellaoui, L.; Mobarak, M. Statistical physics modeling of phosphate adsorption onto chemically modified carbonaceous clay. Mol. Liq. J. 2019, 279, 94–107. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Morad, N.; Tan, K.A. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (II) from aqueous solution. J. Hazard. Mater. 2011, 186, 160–168. [Google Scholar] [CrossRef]
- Wang, G.; Hua, Y.; Su, X.; Komarneni, S.; Ma, S.; Wang, Y. Cr(VI) adsorption by montmorillonite nanocomposites. Appl. Clay Sci. 2016, 124–125, 111–118. [Google Scholar] [CrossRef]
- Lagergren, S.; Svenska, B.K. Veternskapsakad, Zur theorie der sogenannten adsorption geloester stoffe. Handlingar 1898, 24, 1–39. [Google Scholar]
- Ho, Y.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, J.C.; Morris, W.J. Proceedings of International Conference on Water Pollution Symposium. Pergamon 1962, 2, 231–266. [Google Scholar]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Dubinin, M.M.; Radushkevich, L.V. The equation of the characteristic curve of the activated charcoal, Proceedings of the Academy of Sciences of the USSR. Phys. Chem. Sect. 1947, 55, 331–337. [Google Scholar]
- Mohseni-Bandpi, A.; Al-Musawi, T.J.; Ghahramani, E.; Zarrabi, M.; Mohebi, S.; Vahed, S.A. Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J. Mol. Liq. 2016, 218, 615–624. [Google Scholar] [CrossRef]
- Atia, A.A. Adsorption of chromate and molybdate by cetylpyridinium bentonite. Appl. Clay Sci. 2008, 41, 73–84. [Google Scholar] [CrossRef]
- Priyadharsini, C.I.; Sumathi, M.; Prakasam, A.; Anbarasan, P.M.; Sathiyapriya, R.; Aroulmoji, V. Effect of Mg doping on structural and optical properties of SnO2 nanoparticles by chemical co-precipitation method. Int. J. Adv. Sci. Eng. 2017, 3, 428–434. [Google Scholar]
- Seliem, M.K.; Komarneni, S. Equilibrium and kinetic studies for adsorption of iron from aqueous solution by synthetic Na-A zeolites: Statistical modeling and optimization. Microporous Mesoporous Mater. 2016, 228, 266–274. [Google Scholar] [CrossRef]
- Seliem, M.K.; Komarneni, S.; AbuKhadra, M.R. Phosphate removal from solution by composite of MCM-41 silica with rice husk: Kinetic and equilibrium studies. Microporous Mesoporous Mater. J. 2016, 224, 51–57. [Google Scholar] [CrossRef]
- Sharma, P.; Kaur, R.; Baskar, C.; Chung, W.-J. Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 2010, 259, 249–257. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Chao, H.-P. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. J. Environ. Chem. Eng. 2016, 4, 2671–2682. [Google Scholar] [CrossRef]
- Adeyemo, A.A.; Adeoye, I.O.; Bello, O.S. Adsorption of dyes using different types of clay: A review. Appl. Water Sci. 2017, 7, 543–568. [Google Scholar] [CrossRef] [Green Version]
- Elmoubarki, R.; Mahjoubi, F.Z.; Tounsadi, H.; Moustadraf, J.; Abdennouri, M.; Zouhri, A.; El Albani, A.; Barka, N. Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics. Water Resour. Ind. 2015, 9, 16–29. [Google Scholar] [CrossRef]
- Wong, S.; Abd Ghafar, N.; Ngadi, N.; Razmi, F.A.; Inuwa, I.M.; Mat, R.; Amin, N.A.S. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep. 2020, 10, 2928. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Hanafy, H.; Zhang, L.; Sellaoui, L.; Netto, M.S.; Oliveira, M.L.S.; Seliem, M.K.; Dotto, G.L.; Bonilla-Petricioleti, A.; Li, Q. Adsorption of Congo red and methylne blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chem. Eng. J. 2020, 388, 1–10. [Google Scholar] [CrossRef]
- Hua, P.; Sellaoui, L.; Franco, D.; Netto, M.S.; Dotto, G.L.; Bajahzar, A.; Belmabrouk, H.; Bonilla-Petriciolet, A.; Li, Z. Adsorption of acid green and procion red on a magnetic geopolymer based adsorbent: Experiments, characterization and theoretical treatment. Chem. Eng. J. 2020, 383, 123113. [Google Scholar] [CrossRef]
- Shaban, M.; Abukhadra, M.R.; Shahien, M.G.; Ibrahim, S.S. Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dyes. Environ. Chem. Lett. 2018, 16. [Google Scholar] [CrossRef]
- Barczak, M. Amine-modified mesoporous silicas: Morphology-controlled synthesis toward efficient removal of pharmaceuticals. Microporous Mesoporous Mater. 2019, 278, 354–365. [Google Scholar] [CrossRef]
- Geczo, A.; Giannakoudakis, D.A.; Triantafyllidis, K.; Elshaer, M.R.; Rodríguez-Aguado, E.; Bashkova, S. Mechanistic insights into acetaminophen removal on cashew nut shell biomass-derived activated carbons. Environ. Sci. Pollution Res. Int. 2020. [Google Scholar] [CrossRef]
- Saroyan, H.S.; Bele, S.; Giannakoudakis, D.A.; Samanidou, V.F.; Bandosz, T.J.; Deliyanni, E.A. Degradation of endocrine disruptor, bisphenol-A, on mixed oxidation state manganese oxide/modified graphite oxide composite: A role of carbonaceous phase. J. Colloid Interface Sci. 2019, 539, 516–524. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Hosseini-Bandegharaei, A.; Tsafrakidou, P.; Triantafyllidis, K.S.; Kornaros, M.; Anastopoulos, I. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review. J. Environ. Manag. 2018, 227, 354–364. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I. Hosseini-Bandegharaei, A.; Giannakoudakis, D.A.; Robalds, A.; Usman, M.; Escudero, L.B.; Zhou, Y.; Colmenares, J.C.; Núñez-Delgado, A.; et al. Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. J. Mol. Liq. 2019, 295, 111684. [Google Scholar] [CrossRef]
- Barczak, M.; Dobrowolski, R.; Borowski, P.; Giannakoudakis, D.A. Pyridine-, thiol- and amine-functionalized mesoporous silicas for adsorptive removal of pharmaceuticals. Microporous Mesoporous Mater. 2020, 299, 110132. [Google Scholar] [CrossRef]
- Daneshvar, E.; Vazirzadeh, A.; Niazi, A.; Kousha, M.; Naushad, M.; Bhatnagar, A. De-sorption of methylene blue dye from brown macroalga: Effects of operating parame-ters, isotherm study and kinetic modeling. J. Clean. Prod. 2017, 152, 443–453. [Google Scholar] [CrossRef]
- Kumar, R.; Laskar, M.A. Hewaidy, I.F.; Barakat, M.A. Modified adsorbents for removal of heavy metals from aqueous environment: A review. Earth Syst. Environ. 2019, 3, 83–93. [Google Scholar] [CrossRef]
- Almoisheer, N. Alseroury, F.A.; Kumar, R.; Almeelbi, M.; Barakat, A. Synthesis of graphene oxide/silica/carbon nanotubes composite for removal of dye from wastewater. Earth Syst. Environ. 2019, 3, 651–659. [Google Scholar] [CrossRef]
- Mirza, A.; Ahmad, R. An efficient sequestration of toxic crystal violet dye from aqueous solution by Alginate/Pectin nanocomposite: A novel and ecofriendly adsorbent. Groundw. Sustain. Dev. 2020, 11, 100373. [Google Scholar] [CrossRef]
- Hu, X.; Lu, P.; Fu, M.; Chen, Z.; He, Y.; Bai, J.; Zhou, X. Simple synthesis of the novel adsorbent BaCO3/g-C3N4 for rapid and high-efficient selective removal of crystal violet. Colloids Surf. A Physicochem. Eng. Asp. 2020, 600, 124948. [Google Scholar] [CrossRef]
- Georgin, J.; Franco, D.S.P.; Netto, M.S.; Allasia, D.; Oliveira, M.L.S.; Dotto, G.L. Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: Alternative kinetic approaches. Environ. Sci. Pollut. Res. 2020, 27, 25727–25739. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.Q.; Mohamed, E.A.; Seliem, M.K. Deep insights into the organic carbon role in selectivity and adsorption mechanism of phosphate and crystal violet onto low–cost black limestone: Modelling and physicochemical parameters interpretation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123755. [Google Scholar] [CrossRef]
- Lawal, I.A.; Lawal, M.M.; Azeez, M.A.; Ndungu, P. Theoretical and experimental adsorption studies of phenol and crystal violet dye on carbon nanotube functionalized with deep eutectic solvent. J. Mol. Liq. 2019, 288, 110895. [Google Scholar] [CrossRef]
- Massoudinejad, M.; Rasoulzadeh, H.; Ghaderpoori, M. Magnetic chitosan nanocomposite: Fabrication, properties, and optimization for adsorptive removal of crystal violet from aqueous solutions. Carbohydr. Polym. 2019, 206, 844–853. [Google Scholar] [CrossRef]
- Mohamed, R.R.; AbuElella, M.H.; Sabaa, M.W.; Saad, G.R. Synthesis of an efficient adsorbent hydrogel based on biodegradable polymers for removing crystal violet dye from aqueous solution. Cellulose 2018, 25, 6513–6529. [Google Scholar] [CrossRef]
- Brião, G.V.; Jahn, S.L.; Foletto, E.L.; Dotto, G.L. Adsorption of crystal violet dye onto a mesoporous ZSM-5 zeolite synthetized using chitin as template. J. Colloid Interface Sci. 2017, 508, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Shoukat, S.; Bhatti, H.N.; Iqbal, M.; Noreen, S. Mango stone biocomposite preparation and application for crystal violet adsorption: A mechanistic study. Microporous Mesoporous Mater. 2017, 239, 180–189. [Google Scholar] [CrossRef]
- Lee, C.-K.; Liu, S.-S.; Juang, L.-C.; Wang, C.-C.; Lin, K.-S.; Lyu, M.-D. Application of MCM-41 for dyes removal from wastewater. J. Hazard. Mater. 2007, 147, 997–1005. [Google Scholar] [CrossRef]
- Al-Futaisi, A.; Jamrah, A.; Al-Hanai, R. Aspects of cationic dye molecule adsorption to palygorskite. Desalination 2007, 214, 327–342. [Google Scholar] [CrossRef]
Kinetic Model | Equation | Parameters | Ref. |
---|---|---|---|
Pseudo- first order | (mg g−1) is the removed amount of CV at time | [16] | |
(mg g−1) is the equilibrium adsorption capacity. | |||
(g mg−1 min−1) is the rate constant of the first-order adsorption. | |||
Pseudo- second order | (g mg−1 min−1) is the rate constant of the second-order adsorption | [17] | |
Intra-particle diffusion | (mg g−1 min0.5) is the intraparticle diffusion rate constant. | [18] | |
C (mg g−1) is the intercept of the line. | |||
Isotherm Model | |||
(mg L−1) is the equilibrium concentration of the CV in the solution | [19] | ||
Langmuir | (mg g−1) is the removed amount of CV at equilibrium. | ||
(mg g−1) is the maximum adsorption capacity | |||
(L mg−1): is the Langmuir constant | |||
(mg g−1) is the CV adsorption capacity. | [20] | ||
Freundlich | n is the heterogeneity factor. | ||
(mol2/kJ2) is the D-R constant | [21] | ||
Dubinin–Radushkevich | (kJ2/mol2) is the Polanyil potential, equal to | ||
is the universal gas constant (8.31 J (mol K)−1). | |||
T (K) is the absolute temperature. | |||
(mg g−1) is the theoretical adsorption capacity. |
Advanced Statistical Physics Modes | Ref. | ||
---|---|---|---|
(M 1) Monolayer with one energy | Q (mg g−1) is the adsorbed quantity, n is the ions number per site, NM (mg g−1) is the receptor sites density, Qo (mg g−1) is the adsorbed quantity at saturation. (mg L−1) is the concentration at half–saturation. | [11] | |
(M 2) Monolayer with two energies | c1 and c2 (mg L−1) are the concentrations at half saturation for the first and the second active sites, respectively. n1 and n2 (–) are the ions number per site for the first and the second receptor sites, respectively. | [13] | |
(M 3) Double layer with one energy | [13] | ||
(M 4) Double layer with two energies | [13] | ||
(M 5) multilayer | where | [13] |
Kinetic Model | T = 25 °C | T = 40 °C | T = 55 °C |
---|---|---|---|
Pseudo-first-order | |||
() | 239.72 | 243.8 | 244.9 |
() | 214.27 | 220.52 | 224.07 |
(g (mg min)−1) | 0.17 | 0.19 | 0.20 |
0.9747 | 0.9811 | 0.9837 | |
Pseudo-second-order | |||
() | 232.92 | 235.48 | 237.59 |
(g (mg min)−1) | 0.00062 | 0.00081 | 0.00091 |
0.9871 | 0.9901 | 0.9915 | |
Intra-particle diffusion | |||
(mg(g min0.5)−1) | 5.899 | 5.442 | 5.18 |
C () | 131.36 | 143.92 | 150.97 |
0.7901 | 0.7899 | 0.7782 |
Isotherm Model | T = 25 °C | T = 40 °C | T = 55 °C |
---|---|---|---|
Langmuir | |||
() | 447.08 | 482.69 | 499.36 |
( | 0.203 | 0.23 | 0.594 |
0.9999 | 0.9997 | 0.9996 | |
0.21 | 0.77 | 0.97 | |
Freundlich | |||
289.912 | 301.84 | 354.82 | |
0.081 | 0.091 | 0.072 | |
0.9996 | 0.9993 | 0.9994 | |
1.135 | 1.95 | 1.8 | |
DR | |||
463.8 | 506.22 | 525.45 | |
5.93 | 6.38 | 7.85 | |
0.9998 | 0.9995 | 0.9996 | |
0.617 | 1.305 | 1.146 |
T (°C) | 25 | 40 | 55 | |||
---|---|---|---|---|---|---|
R2 | R2 | R2 | ||||
RMSE | RMSE | RMSE | ||||
M 1 | 0.99994 | 0.14 | 0.9997 | 0.77 | 0.9997 | 0.93 |
M 2 | 0.99997 | 0.07 | 0.9998 | 0.43 | 0.9998 | 0.57 |
M 3 | 0.99995 | 0.13 | 0.9997 | 0.66 | 0.9997 | 0.81 |
M 4 | 0.99995 | 0.12 | 0.9997 | 0.67 | 0.9997 | 0.82 |
M 5 | 0.99999 | 0.003 | 0.9999 | 0.2 | 0.9999 | 0.37 |
T | ||||||
---|---|---|---|---|---|---|
(°C) | (–) | (mg g−1) | (mg g−1) | (kJ mol−1) | (kJ mol−1) | (mg g−1) |
25 | 2.56 | 162.24 | 2.19 | 21.06 | 12.69 | 909.57 |
40 | 2.23 | 198.83 | 2.26 | 22.99 | 13.47 | 1002.06 |
55 | 1.8 | 256.5 | 2.33 | 27.22 | 14.24 | 1075.76 |
Sorbent | qmax (mg g−1) | Ref. |
---|---|---|
Alginate/Pectin nanocomposite | 619 | [44] |
BaCO3/g-C3N4 | 1240 | [45] |
Ocotea puberula bark powder | 444 | [46] |
Black limestone | 340 | [47] |
Carbon nanotubes modified with deep eutectic solvent | 394 | [48] |
Magnetic chitosan nanocomposite | 77 | [49] |
Polymer-based hydrogel | 453 | [50] |
ZSM-5 zeolite | [51] | |
Chitin-templated ZSM-5 zeolite | 1217 | [51] |
Mango stone biocomposite | 353 | [52] |
MCM-41 silica | 237 | [53] |
Palygorskite clay | 53 | [54] |
SBA-15 nanoparticles | 588 | [41] |
MNP/CTAB‒EC | 448 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barakat, M.A.E.; Kumar, R.; Seliem, M.K.; Selim, A.Q.; Mobarak, M.; Anastopoulos, I.; Giannakoudakis, D.; Barczak, M.; Bonilla-Petriciolet, A.; Mohamed, E.A. Exfoliated Clay Decorated with Magnetic Iron Nanoparticles for Crystal Violet Adsorption: Modeling and Physicochemical Interpretation. Nanomaterials 2020, 10, 1454. https://doi.org/10.3390/nano10081454
Barakat MAE, Kumar R, Seliem MK, Selim AQ, Mobarak M, Anastopoulos I, Giannakoudakis D, Barczak M, Bonilla-Petriciolet A, Mohamed EA. Exfoliated Clay Decorated with Magnetic Iron Nanoparticles for Crystal Violet Adsorption: Modeling and Physicochemical Interpretation. Nanomaterials. 2020; 10(8):1454. https://doi.org/10.3390/nano10081454
Chicago/Turabian StyleBarakat, Mohamed Abou Elfetouh, Rajeev Kumar, Moaaz Korany Seliem, Ali Qurany Selim, Mohamed Mobarak, Ioannis Anastopoulos, Dimitrios Giannakoudakis, Mariusz Barczak, Adrián Bonilla-Petriciolet, and Essam Abdelrahman Mohamed. 2020. "Exfoliated Clay Decorated with Magnetic Iron Nanoparticles for Crystal Violet Adsorption: Modeling and Physicochemical Interpretation" Nanomaterials 10, no. 8: 1454. https://doi.org/10.3390/nano10081454
APA StyleBarakat, M. A. E., Kumar, R., Seliem, M. K., Selim, A. Q., Mobarak, M., Anastopoulos, I., Giannakoudakis, D., Barczak, M., Bonilla-Petriciolet, A., & Mohamed, E. A. (2020). Exfoliated Clay Decorated with Magnetic Iron Nanoparticles for Crystal Violet Adsorption: Modeling and Physicochemical Interpretation. Nanomaterials, 10(8), 1454. https://doi.org/10.3390/nano10081454