The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity
Abstract
:1. Introduction
2. General Properties of Carbon Nanomaterials
2.1. Zero-Dimensional (0D) Carbon Materials
2.1.1. Fullerenes
2.1.2. Carbon Dots
2.1.3. Nanodiamonds
2.2. One-Dimensional Carbon Nanomaterials
2.2.1. Carbon Nanotubes
2.2.2. Carbon Nanohorns
2.3. Two-Dimensional Carbon Materials
Graphene
3. Biological Effects of Carbon Nanomaterials
3.1. Genotoxic Preview of Carbon Nanomaterials
3.1.1. The Genotoxicity of Fullerene
3.1.2. The Genotoxicity of Nanodiamonds
3.1.3. The Genotoxicity of Carbon Nanotubes
3.1.4. The Genotoxicity of Graphene
3.2. Mechanisms of CNP-Induced Genotoxicity
- NP interactions with nuclear proteins implicated in replication, transcription, or repair processes: For example, C60 fullerene binds to DNA topoisomerase II alpha in the ATP binding domain, which may inhibit enzyme activity [123]. C60 fullerene might interact with PMS2, RFC3, and PCNA proteins involved in the DNA mismatch repair pathway [124]. Moreover, NPs can induce ROS-mediated inactivation of nuclear proteins, thus causing structural alteration thereof [125].
- NP interactions with a mitotic spindle or its components-aneugenic effect: NPs interreacting with the mitotic spindle apparatus, centrioles, or their associated proteins can affect any of the mitotic apparatus functions, which can eventually lead to a loss or gain in chromosomes in daughter cells. This interpretation is supported by the results obtained by Sargent et al. [114], who reported the induction of aneuploidy, the formation of three spindle poles and microtubules, and centrosome fragmentation in human airway epithelial cells exposed to SWCNTs at a dose that would be a worker-relevant exposure dose (0.024 µg/cm2). Similar effects were observed for MWCNTs on the same cell type [115].
- Disturbance of cell cycle checkpoint functions: NPs can react with protein kinases and affect their function. It is well-established that protein kinases are responsible for cell cycle regulation, i.e., replication of DNA and cell division. Inactivation of protein kinases or NPs interaction with proteins involved in the aforementioned processes can result in the disturbance of protein kinase function. Such disturbance of cytokinesis can consequently lead to the formation of aneuploid or multinucleated cells [116].
- ROS arising from NP surface: NPs can cause ROS in the cells that may, through free radical attack, generate indirect oxidative damage to DNA. Namely, ROS attack the DNA, causing purine- (such as 8-oxoG) and pyrimidine-derived oxidized base lesions and DNA strand breaks. Such damages of the DNA base can cause mutations through mispairing in replication, leading to carcinogenesis [126].
- Transition metals that form the NP surface, as a consequence of the synthesis pathways: DNA damage can be generated by toxic ions released from soluble NPs.
- ROS produced by cell components (mitochondria): DNA damage can be caused by ROS, which occurs as a mitochondrial response to stress produced as a result of NP cell components interactions.
- Inhibition of antioxidants defense: The inhibition of antioxidants and consequent accumulation of reactive oxygen can potentially lead to DNA damage [125].
3.3. Activation of Cell Signaling Pathways by Carbon Nanoparticles
3.3.1. Graphene
3.3.2. Fullerenols
3.3.3. Carbon Dots
3.3.4. Nanodiamonds
3.3.5. Carbon Nanotubes
3.4. Acute Toxicity of Fullerenol Nanoparticles in Vivo
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, P.C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 2014, 32, 711–726. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Colvin, V.L. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 2003, 21, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, A.; Injac, R.; Jovic, D.; Mrdjanovic, J.; Seke, M. Bioimpact of Carbon Nanomaterials. In Advanced Carbon Materials and Technology, 1st ed.; Tiwari, A., Shukla, S.K., Eds.; John Wiley & Sons Ltd.: Xoboken, NJ, USA, 2014; Chapter 6; pp. 193–271. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, M.; Gu, C.; Zhang, C. Water disinfection processes change the cytotoxicity of C60 fullerene: Reactions at the nano-bio interface. Water Res. 2019, 163, 114867. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Adeleye, A.S.; Keller, A.A.; Wu, Z.; Han, W.; Wang, Y.; Zhang, C.; Li, Y. Photochlorination-induced transformation of graphene oxide: Mechanism and environmental fate. Water Res. 2017, 124, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Zhang, W.; Qiu, Y.; Yang, Z.; Wang, J.; Zhang, Y. Cotransport of nanoplastics (NPs) with fullerene (C60) in saturated sand: Effect of NPs/C60 ratio and seawater salinity. Water Res. 2019, 148, 469–478. [Google Scholar] [CrossRef]
- Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 2017, 46, 4572–4613. [Google Scholar] [CrossRef] [Green Version]
- Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersman, M.C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860. [Google Scholar] [CrossRef] [Green Version]
- Greil, P. Perspectives of Nano-Carbon Based Engineering Materials. Adv. Eng. Mater. 2015, 17, 124–137. [Google Scholar] [CrossRef]
- Sheka, E. (Ed.) Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 1–291. [Google Scholar]
- Bourassa, D.J.; Kerna, N.A.; Desantis, M. Will Nanocarbon Onion-Like Fullerenes (NOLFs) Play a Decisive Role in the Future of Molecular Medicine. J. Nanomed. Nanosci. 2019, 3, JNAN-152. [Google Scholar] [CrossRef]
- Shoji, M.; Takahashi, E.; Hatakeyama, D.; Iwai, Y.; Morita, Y.; Shirayama, R.; Echigo, N.; Kido, H.; Nakamura, S.; Mashino, T.; et al. Anti-Influenza Activity of C60 Fullerene Derivatives. PLoS ONE 2013, 8, e66337. [Google Scholar] [CrossRef]
- Djordjevic, A.; Srdjenovic, B.; Seke, M.; Petrovic, D.; Injac, R.; Mrdjanovic, J. Review of synthesis and antioxidant potential of fullerenol nanoparticles. J. Nanomater. 2015, 567073. [Google Scholar] [CrossRef] [Green Version]
- Rašović, I. Water-soluble fullerenes for medical applications. Mater. Sci. Technol. 2017, 33, 777–794. [Google Scholar] [CrossRef]
- Grebowski, J.; Kazmierska, P.; Krokosz, A. Fullerenols as a new therapeutic approach in nanomedicine. Biomed. Res. Int. 2013, 751913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogdanovic, G.; Djordjevic, A. Carbon nanomaterials: Biologically active fullerene derivatives. Srp. Arh. Celok. Lek. 2016, 144, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Semenov, K.N.; Charykov, N.A.; Postnov, V.N.; Sharoyko, V.V.; Vorotyntsev, I.V.; Galagudza, M.M.; Murin, I.V. Fullerenols: Physicochemical properties and applications. Prog. Solid State Chem. 2016, 44, 59–74. [Google Scholar] [CrossRef]
- Vileno, B.; Marcoux, P.R.; Lekka, M.; Sienkiewicz, A.; Fehér, T.; Forró, L. Spectroscopic and photophysical properties of a highly derivatized C60 fullerol. Adv. Funct. Mater. 2006, 16, 120–128. [Google Scholar] [CrossRef]
- Assemi, S.; Tadjiki, S.; Donose, B.C.; Nguyen, A.V.; Miller, J.D. Aggregation of fullerol C60(OH)24 nanoparticles as revealed using flow field-flow fractionation and atomic force microscopy. Langmuir 2010, 26, 16063–16070. [Google Scholar] [CrossRef]
- Vraneš, M.; Borišev, I.; Tot, A.; Armaković, S.; Armaković, S.; Jović, D.; Gadžurić, S.; Djordjevic, A. Self-assembling, reactivity and molecular dynamics of fullerenol nanoparticles. Phys. Chem. Chem. Phys. 2017, 19, 135–144. [Google Scholar] [CrossRef]
- Petrovic, D.; Seke, M.; Srdjenovic, B.; Djordjevic, A. Applications of Anti/Prooxidant Fullerenes in Nanomedicine along with Fullerenes Influence on the Immune System. J. Nanomater. 2015, 565638. [Google Scholar] [CrossRef] [Green Version]
- Seke, M.; Petrovic, D.; Djordjevic, A.; Jovic, D.; Labudovic Borovic, M.; Kanacki, Z.; Jankovic, M. Fullerenol/doxorubicin nanocomposite mitigates acute oxidative stress and modulates apoptosis in myocardial tissue. Nanotechnology 2016, 27, 485101. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, N.; Milenković, S.; Jović, D.; Lazarevic, S.; Mrdjanović, J.; Djordjevic, A. Fullerenol-Capped Porous Silica Nanoparticles for pH-Responsive Drug Delivery Fullerenol-Capped Porous Silica Nanoparticles for pH-Responsive Drug Delivery. Adv. Mater. Sci. Eng. 2015, 2015, 567350. [Google Scholar] [CrossRef] [Green Version]
- Jović, D.S.; Seke, M.N.; Djordjevic, A.N.; Mrđanović, J.Ž.; Aleksić, L.D.; Bogdanović, G.M.; Pavić, A.M.; Plavec, J. Fullerenol nanoparticles as a new delivery system for doxorubicin. RSC Adv. 2016, 6, 38563–38578. [Google Scholar] [CrossRef]
- Afandi, A.; Howkins, A.; Boyd, I.W.; Jackman, R.B. Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds. Sci. Rep. 2018, 8, 3270. [Google Scholar] [CrossRef] [PubMed]
- Hack, R.; Correia, C.H.G.; Zanon, R.A.D.S.; Pezzin, S.H. Characterization of graphene nanosheets obtained by a modified Hummer’s method. Matéria 2018, 23, 1–11. [Google Scholar] [CrossRef]
- Semeniuk, M.; Yi, Z.; Poursorkhabi, V.; Tjong, J.; Jaffer, S.; Lu, Z.H.; Sain, M. Future perspectives and review on organic carbon dots in electronic applications. ACS Nano 2019, 13, 6224–6255. [Google Scholar] [CrossRef]
- Baker, S.; Baker, G. Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef]
- Li, H.; Kang, Z.; Liu, Y.; Lee, S.T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381. [Google Scholar] [CrossRef]
- Zheng, X.T.; Ananthanarayanan, A.; Luo, K.Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620–1636. [Google Scholar] [CrossRef]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.C.; Saha, A.; Jana, N.R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C 2009, 113, 18546–18551. [Google Scholar] [CrossRef]
- Liu, R.; Wu, D.; Feng, X.; Mullen, K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 2011, 133, 15221–15223. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhang, S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 2012, 48, 10177–10179. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Zhu, S.; Feng, T.; Xia, C.; Song, Y.; Yang, B. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review. Mater. Today Chem. 2017, 6, 13–25. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, Y.; Yu, S.; Jiang, C. Fluorescent carbon dots: Rational synthesis, tunable optical properties and analytical applications. RSC Adv. 2017, 7, 40973–40989. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Sun, H. Novel properties and applications of carbon nanodots. Nanoscale Horiz. 2018, 3, 565–597. [Google Scholar] [CrossRef]
- Anwar, S.; Ding, H.; Xu, M.; Hu, X.; Li, Z.; Wang, J.; Liu, L.; Jiang, L.; Wang, D.; Dong, C. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl. Bio Mater. 2019, 2, 2317–2338. [Google Scholar] [CrossRef]
- Wu, X.; Tian, F.; Wang, W.; Chen, J.; Wu, M.; Zhao, J.X. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. J. Mater. Chem. C 2013, 1, 4676–4684. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Li, S.; Fan, Z.; Meng, X.; Fan, L.; Yang, S. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today 2016, 11, 565–586. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Mohammadi, S.; Salimi, A. Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. TrAC Trends Anal. Chem. 2019, 115, 83–99. [Google Scholar] [CrossRef]
- Karakoçak, B.B.; Liang, J.; Kavadiya, S.; Berezin, M.Y.; Biswas, P.; Ravi, N. Optimizing the synthesis of red-emissive nitrogen-doped carbon dots for use in bioimaging. ACS Appl. Nano Mater. 2018, 1, 3682–3692. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Shimizu, Y.; Pyatenko, A.; Kawaguchi, K.; Koshizaki, N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. 2010, 47, 932–934. [Google Scholar] [CrossRef]
- Zheng, M.; Ruan, S.; Liu, S.; Sun, T.; Qu, D.; Zhao, H.; Xie, Z.; Gao, H.; Jing, X.; Sun, Z. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 2015, 9, 11455–11461. [Google Scholar] [CrossRef]
- Yao, B.; Huang, H.; Liu, Y.; Kang, Z. Carbon dots: A small conundrum. Trends Chem. 2019, 1, 235–246. [Google Scholar] [CrossRef]
- Kim, T.H.; Sirdaarta, J.P.; Zhang, Q.; Eftekhari, E.; John, J.S.; Kennedy, D.; Cock, I.E.; Li, Q. Selective toxicity of hydroxyl-rich carbon nanodots for cancer research. Nano Res. 2018, 11, 2204–2216. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.; Ge, J.; Liu, W.; Zheng, X.; Chen, S.; Wen, Y.; Zhang, H.; Wang, P. A Magnetofluorescent Carbon Dot Assembly as an Acidic H2O2-Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Adv. Mater. 2018, 30, 1706090. [Google Scholar] [CrossRef]
- Yu, P.; Wen, X.; Toh, Y.R.; Tang, J. Temperature-dependent fluorescence in carbon dots. J. Phys. Chem. C 2012, 116, 25552–25557. [Google Scholar] [CrossRef]
- Zhang, X.; Ming, H.; Liu, R.; Han, X.; Kang, Z.; Liu, Y.; Zhang, Y. Highly sensitive humidity sensing properties of carbon quantum dots films. Mater. Res. Bull. 2013, 48, 790–794. [Google Scholar] [CrossRef]
- Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Shi, W.; Zhang, S.X.A. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem. Mater. 2014, 26, 3104–3112. [Google Scholar] [CrossRef]
- Yoo, D.; Park, Y.; Cheon, B.; Park, M.H. Carbon dots as an effective fluorescent sensing platform for metal ion detection. Nanoscale Res. Lett. 2019, 14, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, P.; Rajput, P.; Thakur, A.; Kim, K.H.; Kumar, P. Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC Trends Anal. Chem. 2019, 114, 171–195. [Google Scholar] [CrossRef]
- Da Silva, J.C.E.; Gonçalves, H.M. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem. 2011, 30, 1327–1336. [Google Scholar] [CrossRef]
- Nurunnabi, M.; Khatun, Z.; Huh, K.M.; Park, S.Y.; Lee, D.Y.; Cho, K.J.; Lee, Y.K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013, 7, 6858–6867. [Google Scholar] [CrossRef] [PubMed]
- Havrdova, M.; Hola, K.; Skopalik, J.; Tomankova, K.; Petr, M.; Cepe, K.; Polakova, K.; Tucek, J.; Bourlinos, A.B.; Zboril, R. Toxicity of carbon dots–Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 2016, 99, 238–248. [Google Scholar] [CrossRef]
- Yang, S.T.; Wang, X.; Wang, H.; Lu, F.; Luo, P.G.; Cao, L.; Meziani, M.J.; Liu, J.H.; Liu, Y.; Chen, M. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 2009, 113, 18110–18114. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ma, L.; Liu, Y.; Chen, C. Applications of functionalized fullerenes in tumor theranostics. Theranostics 2012, 2, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.G.; Yang, F.; Yang, S.T.; Sonkar, S.K.; Yang, L.; Broglie, J.J.; Liu, Y.; Sun, Y.P. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 2014, 4, 10791–10807. [Google Scholar] [CrossRef]
- Gao, A.; Lu, N.; Wang, Y.; Dai, P.; Li, T.; Gao, X.; Wang, Y.; Fan, C. Enhanced Sensing of Nucleic Acids with Silicon Nanowire Field Effect Transistor Biosensors. Nano Lett. 2012, 12, 5262–5268. [Google Scholar] [CrossRef]
- Hao, J.; Liu, F.; Liu, N.; Zeng, M.; Song, Y.; Wang, L. Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal-organic frameworks. Sens. Actuators B Chem. 2017, 245, 641–647. [Google Scholar] [CrossRef]
- Pardo, J.; Peng, Z.; Leblanc, R.M. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules 2018, 23, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danilenko, V.V. On the history of the discovery of nanodiamond synthesis. Phys. Solid State 2004, 46, 595–599. [Google Scholar] [CrossRef]
- Tinwala, H.; Wairkar, S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater. Sci. Eng. C 2019, 97, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Pichot, V.; Risse, B.; Schnell, F.; Mory, J.; Spitzer, D. Understanding ultrafine nanodiamond formation using nanostructured explosives. Sci. Rep. 2013, 3, 2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochalin, V.N.; Shenderova, O.H.D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Osswald, S.; Yushin, G.; Mochalin, V.; Kucheyev, S.O.; Gogotsi, Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 2006, 128, 11635–11642. [Google Scholar] [CrossRef]
- Schrand, A.M.; Hens, S.A.C.; Shenderova, O.A. Nanodiamond particles: Properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 2009, 34, 18–74. [Google Scholar] [CrossRef]
- Shenderova, O.; Koscheev, A.; Zaripov, N.; Petrov, I.; Skryabin, Y.; Detkov, P.; Turner, S.; Van Tendeloo, G. Surface chemistry and properties of ozone-purified detonation nanodiamonds. J. Phys. Chem. C 2011, 115, 9827–9837. [Google Scholar] [CrossRef]
- Ōsawa, E. Recent progress and perspectives in single-digit nanodiamond. Diam. Relat. Mater. 2007, 16, 2018–2022. [Google Scholar] [CrossRef]
- Krüger, A.; Liang, Y.; Jarre, G.; Stegk, J. Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 2006, 16, 2322–2328. [Google Scholar] [CrossRef]
- Meinhardt, T.; Lang, D.; Dill, H.; Krueger, A. Pushing the functionality of diamond nanoparticles to new horizons: Orthogonally functionalized nanodiamond using click chemistry. Adv. Funct. Mater. 2011, 21, 494–500. [Google Scholar] [CrossRef]
- Xing, Y.; Dai, L. Nanodiamonds for nanomedicine. Nanomedicine 2009, 4, 207–218. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, L.P.; Yan, Y.; Stacey, A.; Simpson, D.A.; Hall, L.T.; Maclaurin, D.; Prawer, S.; Mulvaney, P.; Wrachtrup, J.; Caruso, F. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 2011, 6, 358. [Google Scholar] [CrossRef] [PubMed]
- Nagl, A.; Hemelaar, S.R.; Schirhagl, R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes-a review. Anal. Bioanal. Chem. 2015, 407, 7521–7536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Sharma, A.K.; Sharma, V. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Eng. 2015, 2, 1094017. [Google Scholar] [CrossRef]
- Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Kishore, D.R.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm. 2018, 548, 540–558. [Google Scholar] [CrossRef]
- Meng, L.; Fu, C.; Lu, Q. Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 2009, 19, 801–810. [Google Scholar] [CrossRef]
- Merum, S.; Veluru, J.B.; Seeram, R. Functionalized carbon nanotubes in bio-world: Applications, limitations and future directions. Mater. Sci. Eng. B 2017, 223, 43–63. [Google Scholar] [CrossRef]
- Spinato, C.; Giust, D.; Vacchi, I.A.; Ménard-Moyon, C.; Kostarelos, K.; Bianco, A. Different chemical strategies to aminate oxidised multi-walled carbon nanotubes for siRNA complexation and delivery. J. Mater. Chem. B 2016, 4, 431–441. [Google Scholar] [CrossRef]
- Rodríguez-Jiménez, R.; Alonso-Núñez, G.; Paraguay-Delgado, F.; Espinoza-Gómez, H.; Vélez-López, E.; Rogel-Hernández, E. Multi-Walled Carbon Nanotube Functionalization by Radical Addition Using Hydroxymethylene Groups. J. Nanosci. Nanotechnol. 2016, 16, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Balas, M.; Constanda, S.; Duma-Voiculet, A.; Prodana, M.; Hermenean, A.; Pop, S.; Demetrescu, I.; Dinischiotu, A. Fabrication and toxicity characterization of a hybrid material based on oxidized and aminated MWCNT loaded with carboplatin. Toxicol. Vitro 2016, 37, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Mehra, K.N.; Jain, K.; Jain, N.K. Biomedical Applications of Carbon Nanotubes: A Critical Review. Curr. Drug Deliv. 2016, 13, 796–817. [Google Scholar] [CrossRef] [PubMed]
- Ünlü, A.; Meran, M.; Dinc, B.; Karatepe, N.; Bektaş, M.; Güner, F.S. Cytotoxicity of doxrubicin loaded single-walled carbon nanotubes. Mol. Biol. Rep. 2018, 45, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Katz, E. Bioelectrocatalysis at carbon nanotubes. In Methods in Enzymology, 1st ed.; Kumar, C.V., Ed.; Academic Press: London, UK, 2020; pp. 215–247. [Google Scholar] [CrossRef]
- Guerra, J.; Herrero, M.A.; Vázquez, E. Carbon nanohorns as alternative gene delivery vectors. RSC Adv. 2014, 4, 27315. [Google Scholar] [CrossRef]
- Dellinger, A.; Zhou, Z.; Connor, J.; Madhankumar, A.B.; Pamujula, S.; Sayes, C.M.; Kepley, K.L. Application of fullerenes in nanomedicine: An update. Nanomedicine 2013, 8, 1191–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Fal, V.I.; Colombo, L.; Gillbert, P.P.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Kostarelos, K.; Novoselov, K.S. Exploring the interface of graphene and biology. Science 2014, 344, 261–263. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Priyadarsini, S.; Mohanty, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct. Chem. 2018, 8, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, C.; Behan, J.A.; Colavita, P.E. Electrocatalysis at Nanocarbons: Model Systems and Applications in Energy Conversion. In Nanocarbon Electrochemistry, 1st ed.; Yang, N., Zhao, G., Foord, J., Eds.; John Wiley & Sons Ltd.: Xoboken, NJ, USA, 2020; pp. 201–249. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Shukla, V. Observation of critical magnetic behavior in 2D carbon based composites. Nanoscale Adv. 2020, 2, 962–990. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Sharma, R.; Khanuja, M. Carbon Based Electrocatalysts. In Methods for Electrocatalysis, 1st ed.; Inamuddin, Boddula, R., Asiri, A.M., Eds.; Springer Nature Switzerland AD: Basel, Switzerland, 2020; pp. 301–309. [Google Scholar]
- Madannejad, R.; Shoaie, N.; Jahanpeyma, F.; Darvishi, M.H.; Azimzadeh, M.; Javadi, H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact. 2019, 307, 206–222. [Google Scholar] [CrossRef]
- Singh, N.; Manshian, B.; Jenkins, G.J.S.; Griffithsa, S.M.; Williams, P.M.; Maffeis, T.G.G.; Wright, C.J.; Doaka, S.H. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30, 3891–3914. [Google Scholar] [CrossRef]
- Magdolenova, Z.; Collins, A.; Kumar, A.; Dhawan, A.; Dusinska, M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 2014, 8, 233–278. [Google Scholar] [CrossRef]
- Folkmann, J.K.; Risom, L.; Jacobsen, N.R.; Wallin, H.; Loft, S.; Møller, P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ. Health Perspect. 2009, 117, 703–708. [Google Scholar] [CrossRef] [Green Version]
- Mrđanović, J.; Šolajić, S.; Bogdanović, V.; Stankov, K.; Bogdanović, G.; Djordjevic, A. Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutat. Res. 2009, 680, 25–30. [Google Scholar] [CrossRef]
- Mrđanovic, J.; Šolajić, S.; Bogdanović, V.; Djordjevic, A.; Bogdanović, G.; Injac, R.; Rakočević, Z. Effects of fullerenol nano particles C60(OH)24 on micronuclei and chromosomal aberrations’ frequency in peripheral blood lymphocytes. Dig. J. Nanomater. Biostruct. 2012, 7, 673–686. [Google Scholar]
- Sumi, N.; Chitra, K.C. Cytogenotoxic effects of fullerene C60 in the freshwater teleostean fish, Anabas testudineus (Bloch, 1792). Mutat. Res. 2019, 847, 503104. [Google Scholar] [CrossRef] [PubMed]
- Samadian, H.; Salami, M.S.; Jaymand, M.; Azarnezhad, A.; Najafi, M.; Hamed Barabadi, H.; Ahmadi, A. Genotoxicity assessment of carbon-based nanomaterials; Have their unique physicochemical properties made them double-edged swords? Mutat. Res. 2020, 783, 108296. [Google Scholar] [CrossRef] [PubMed]
- Totsuka, Y.; Higuchi, T.; Imai, T.; Nishikawa, A.; Nohmi, T.; Kato, T.; Masuda, S.; Kinae, N.; Hiyoshi, K.; Ogo, S.; et al. Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems. Part. Fibre Toxicol. 2009, 6, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpeta-Kaczmarek, J.; Kędziorski, A.; Augustyniak-Jabłokow, M.A.; Dziewięcka, M.; Augustyniak, M. Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environ. Res. 2018, 166, 602–609. [Google Scholar] [CrossRef]
- Dworak, N.; Wnuk, M.; Zebrowski, J.; Bartosz, G.; Lewinska, A. Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. Carbon 2014, 68, 763–776. [Google Scholar] [CrossRef]
- Xing, Y.; Xiong, W.; Zhu, L.; Osawa, E.; Hussin, S.; Dai, L. DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano 2011, 5, 2376–2384. [Google Scholar] [CrossRef]
- Lindberg, H.K.; Falck, G.C.; Suhonen, S.; Vippola, M.; Vanhala, E.; Catalán, J.; Savolainen, K.; Norppa, H. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol. Lett. 2009, 186, 166–173. [Google Scholar] [CrossRef]
- Kisin, E.R.; Murray, A.R.; Keane, M.J.; Shi, X.C.; Schwegler-Berry, D.; Gorelik, O.; Arepalli, S.; Castranova, V.; Wallace, W.E.; Kagan, V.E.; et al. Single-walled carbon nanotubes: Geno-and cytotoxic effects in lung fibroblast V79 cells. J. Toxicol. Environ. Health A 2007, 70, 2071–2079. [Google Scholar] [CrossRef]
- Sargent, L.M.; Hubbs, A.F.; Young, S.H.; Kashona, M.L.; Dinu, C.Z.; Salisbury, J.L.; Benkovic, S.A.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; et al. Single-walled carbon nanotube-induced mitotic disruption. Mutat. Res. 2012, 745, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Siegrist, K.J.; Reynolds, S.H.; Kashon, M.L.; Lowry, D.T.; Dong, C.; Hubbs, A.F.; Young, S.H.; Salisbury, J.L.; Porter, D.W.; Benkovic, S.A.; et al. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. Part. Fibre Toxicol. 2014, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R.K.; Rahman, Q.; Kashyap, M.P.; Lohani, M.; Pant, A.B. Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549. PLoS ONE 2011, 6, e25767. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Shin, J.H.; Lee, J.S.; Hwang, J.H.; Lee, J.H.; Baek, J.E.; Kim, T.G.; Kim, B.W.; Kim, J.S.; Lee, G.H.; et al. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology 2016, 10, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, M.C.P.; Soares, E.S.; de Jesus, M.B.; Ceragioli, H.J.; Irazusta, S.P.; Batista, A.G.; Vinolo, M.A.R.; Maróstica, M.R., Jr.; da Cruz-Höfling, M.A. Reduced graphene oxide: Nanotoxicological profile in rats. J. Nanobiotechnol. 2016, 14, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, K.; Poland, C.A. Inhaled nanoparticles and lung cancer-what we can learn from conventional particle toxicology. Swiss Med. Wkly. 2012, 142, 13547. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y.; Wu, J.; Wang, Y.; Yang, X.; Yang, R.; Wang, B.; Yang, J.; Zhang, N. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci. Rep. 2013, 3, 3469. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wu, F.; Meng, W.; White, J.C.; Holden, P.A.; Xing, B. Engineered nanoparticles may induce genotoxicity. Environ. Sci. Technol. 2013, 47, 13212–13214. [Google Scholar] [CrossRef]
- An, H.; Liu, Q.; Ji, Q.; Jin, B. DNA binding and aggregation by carbon nanoparticles. Biochem. Biophys. Res. Commun. 2010, 393, 571–576. [Google Scholar] [CrossRef]
- Baweja, L.; Gurbani, D.; Shanker, R.; Pandey, A.K.; Subramanian, V.; Dhawan, A. C60-fullerene binds with the ATP binding domain of human DNA topoiosmerase II alpha. J. Biomed. Nanotechnol. 2011, 7, 177–178. [Google Scholar] [CrossRef]
- Gupta, S.K.; Baweja, L.; Gurbani, D.; Pandey, A.K.; Dhawan, A. Interaction of C60 fullerene with the proteins involved in DNA mismatch repair pathway. J. Biomed. Nanotechnol. 2011, 7, 179–180. [Google Scholar] [CrossRef]
- Barillet, S.; Jugan, M.L.; Laye, M.; Leconte, Y.; Herlin-Boime, N.; Reynaud, C.; Carrièrea, M. In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: Cyto-, genotoxicity and oxidative stress. Toxicol. Lett. 2010, 198, 324–330. [Google Scholar] [CrossRef]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB 2003, 17, 1195–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, V.; Johnston, H.; Schins, R.P.F. Development of in vitro systems for nanotoxicology: Methodological considerations in vitro methods for nanotoxicology Vicki Stone et al. Crit. Rev. Toxicol. 2009, 39, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Bardhan, N.M. 30 Years of Advances in Functionalization of Carbon Nanomaterials for Biomedical Applications: A Practical Review. J. Mater. Res. 2017, 32, 107–127. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.Y.; Yang, H.J.; Lu, C.H.; Chao, Y.C.; Hwang, S.M.; Chen, C.L.; Lo, K.W.; Sung, L.Y.; Luo, W.Y.; Tuan, H.Y.; et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials 2012, 27, 6559–6569. [Google Scholar] [CrossRef] [PubMed]
- Mullick Chowdhury, S.; Manepalli, P.; Sitharaman, B. Graphene nanoribbons elicit cell specific uptake and delivery via activation of epidermal growth factor receptor enhanced by human papillomavirus E5 protein. Acta Biomater. 2014, 10, 4494–4504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sydlik, U.; Bierhals, K.; Soufi, M.; Abel, J.; Schins, R.P.F.; Unfried, K. Ultrafine carbon particles induce apoptosis and proliferation in rat lung epithelial cells via specific signaling pathways both using EGF-R. Am. J. Physiol. Cell. Mol. Physiol. 2006, 291, L725–L733. [Google Scholar] [CrossRef]
- Feng, T.; Hongchi, Y.; Qing, X.; Yunlong, M.; Hongmei, Y.; Yang, S.; Xiaoheng, L. Cross-talk mechanism between endothelial cells and hepatocellular carcinoma cells via growth factors and integrin pathway promotes tumor angiogenesis and cell migration. Oncotarget 2017, 8, 69577. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Sun, J.; Wang, W.; Fan, J.; Wang, L.; Zhang, X.; Yang, A.; Wang, W.; Zhang, R.; Li, J. Tropomyosin-related kinase B promotes distant metastasis of colorectal cancer through protein kinase B-mediated anoikis suppression and correlates with poor prognosis. Apoptosis 2014, 19, 860–870. [Google Scholar] [CrossRef]
- Lu, L.H.; Lee, Y.T.; Chen, H.W.; Chiang, L.Y.; Huang, H.C. The possible mechanisms of the antiproliferative effect of fullerenol, polyhydroxylated C60, on vascular smooth muscle cells. Br. J. Pharm. 1998, 123, 1097–1102. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Chen, M.; Jiang, Y.; Zhou, T.; Wang, Y.; Hou, Z.; Ren, L. Polyhydroxylated fullerene attenuates oxidative stress-induced apoptosis via a fortifying Nrf2-regulated cellular antioxidant defence system. Int. J. Nanomed. 2014, 9, 2073–2087. [Google Scholar] [CrossRef] [Green Version]
- Bonner, J.C. Lung fibrotic responses to particle exposure. Toxicol. Pathol. 2007, 35, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.A.; Schinwald, A.; Poland, C.A.; Donaldson, K. The mechanism of pleural inflammation by long carbon nanotubes: Interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part. Fibre Toxicol. 2012, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomaki, J.; Valimaki, E.; Sund, J.; Vippola, M.; Clausen, P.A.; Jensen, K.A.; Savolainen, K.; Matikainen, S.; Alenius, H. Long, Needle-like Carbon Nanotubes and Asbestos Activate the NLRP3 Inflammasome through a Similar Mechanism. ACS Nano 2011, 5, 6861–6870. [Google Scholar] [CrossRef] [PubMed]
- Pacurari, M.; Yin, X.J.; Zhao, J.; Ding, M.; Leonard, S.S.; Schwegler-Berry, D.; Ducatman, B.S.; Sbarra, D.; Hoover, M.D.; Castranova, V.; et al. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-κB, and Akt in normal and malignant human mesothelial cells. Environ. Health Perspect. 2008, 116, 1211–1217. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Young, S.H.; Fernback, J.E.; Ma, Q. Single-walled carbon nanotubes induce fibrogenic effect by disturbing mitochondrial oxidative stress and activating NF-κB signaling. J. Clin. Toxicol. 2012, S5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Azad, N.; Iyer, A.K.V.; Wang, L.; Liu, Y.; Lu, Y.; Rojanasakul, Y. Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses. Nanotoxicology 2013, 7, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.K.; Prajapati, V.K. Molecular and immunological toxic effects of nanoparticles. Int. J. Biol. Macromol. 2018, 107, 1278–1293. [Google Scholar] [CrossRef]
- Bagheri, Z.; Ehtesabi, H.; Hallaji, Z.; Latific, H.; Behroodic, E. Investigation the cytotoxicity and photo-induced toxicity of carbon dot on yeast cell. Ecotoxicol. Environ. Saf. 2018, 161, 245–250. [Google Scholar] [CrossRef]
- Chong, Y.; Ge, C.; Fang, G.; Tian, X.; Ma, X.; Wen, T.; Wamer, W.G.; Chen, C.; Chai, Z.; Yin, J.J. Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS Nano 2016, 10, 8690–8699. [Google Scholar] [CrossRef]
- Qin, Y.; Zhou, Z.W.; Pan, S.T.; Hed, Z.H.; Zhang, X.; Qiuc, J.X.; Duan, W.; Yang, T.; Zhou, S.F. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages. Toxicology 2015, 327, 62–76. [Google Scholar] [CrossRef]
- Paget, V.; Sergent, J.A.; Grall, R.; Altmeyer-Morel, S.; Girard, H.A.; Petit, T.; Gesset, C.; Mermoux, M.; Bergonzo, P.; Arnault, J.C.; et al. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology 2014, 8, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Balek, L.; Buchtova, M.; Bosakova, M.K.; Varecha, M.; Foldynova-Trantirkova, S.; Gudernova, I.; Vesela, I.; Havlik, J.; Neburkova, J.; Turner, S.; et al. Nanodiamonds as “artificial proteins”: Regulation of a cell signalling system using low nanomolar solutions of inorganic nanocrystals. Biomaterials 2018, 176, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Venkatakrishnan, A.J.; Deupi, X.; Lebon, G.; Tate, C.G.; Schertler, G.F.; Babu, M.M. Molecular signatures of G-protein-coupled receptors. Nature 2013, 494, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Liu, J.; Kang, Y.; Lin, Y.; Li, D.; Shao, L. Interactions of nanomaterials with ion channels and related mechanisms. Br. J. Pharm. 2019, 176, 3754–3774. [Google Scholar] [CrossRef]
- Weir, C.J. Ion channels, receptors, agonists and antagonists. Anaesth. Intensive Care Med. 2020, 21, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, C.A.; Ramírez-Cepeda, F.; Santana, P.; Torres, E.; Cortés, J.; Guzmán, F.; Schmitt, P.; Mercado, L. Insights into the diversity of NOD-like receptors: Identification and expression analysis of NLRC3, NLRC5 and NLRX1 in rainbow trout. Mol. Immunol. 2017, 87, 102–113. [Google Scholar] [CrossRef]
- Levin, E.R.; Hammes, S.R. Nuclear receptors outside the nucleus: Extranuclear signalling by steroid receptors. Nat. Rev. Mol. Cell Biol. 2016, 17, 783. [Google Scholar] [CrossRef] [Green Version]
- Opaliński, Ł.; Song, J.; Priesnitz, C.; Wenz, L.S.; Oeljeklaus, S.; Warscheid, B.; Pfanner, N.; Becker, T. Recruitment of cytosolic J-proteins by TOM receptors promotes mitochondrial protein biogenesis. Cell Rep. 2018, 25, 2036–2043. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Jana, N.R. Clathrin to lipid raft-endocytosis via controlled surface chemistry and efficient perinuclear targeting of nanoparticle. J. Phys. Chem. Lett. 2015, 6, 3688–3697. [Google Scholar] [CrossRef]
- Stöckmann, D.; Spannbrucker, T.; Ale-Agha, N.; Jakobs, P.; Goy, C.; Dyballa-Rukes, N.; Hornstein, T.; Kümper, A.; Kraegeloh, A.; Haendeler, J.; et al. Non-Canonical activation of the epidermal growth factor receptor by carbon nanoparticles. Nanomaterials 2018, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Alanko, J.; Mai, A.; Jacquemet, G.; Schauer, K.; Kaukonen, R.; Saari, M.; Goud, B.; Ivaska, J. Integrin endosomal signalling suppresses anoikis. Nat. Cell Biol. 2015, 17, 1412–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, K.; Pritchett, J.; Llewellyn, J.; Mullan, A.F.; Athwal, V.S.; Dobie, R.; Harvey, E.; Zeef, L.; Farrow, S.; Streuli, C.; et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat. Commun. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. Shared principles in NF-κB signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef] [Green Version]
- Lingappan, K. NF-κB in oxidative stress. Curr. Opin. Toxicol. 2018, 7, 81–86. [Google Scholar] [CrossRef]
- Rudijanto, A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med. Indones. 2007, 39, 86–93. [Google Scholar]
- Wu, K.C.; McDonald, P.R.; Liu, J.J.; Chaguturu, R.; Klaassen, C.D. Implementation of a high-throughput screen for identifying small molecules to activate the Keap1-Nrf2-ARE pathway. PLoS ONE 2012, 7, e44686. [Google Scholar] [CrossRef]
- Rodríguez-Ramiro, I.; Ramos, S.; Bravo, L.; Goya, L.; Martin, M.A. Procyanidin B2 induces Nrf2 translocation and glutathione S-transferase P1 expression via ERKs and p38-MAPK pathways and protect human colonic cells against oxidative stress. Eur. J. Nutr. 2012, 51, 881–892. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, K.; Zhang, J.; Hai, Y.; Wang, P.; Wang, H.; Liu, Q.; Wong, C.C.; Yao, J.; Gao, Y.; et al. c-Jun NH2-Terminal Protein Kinase Phosphorylates the Nrf2-ECH Homology 6 Domain of Nuclear Factor Erythroid 2–Related Factor 2 and Downregulates Cytoprotective Genes in Acetaminophen-Induced Liver Injury in Mice. Hepatology 2020, 71, 1787–1801. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.C.; Jana, N.R. Toxicology and Biosafety of Carbon Nanomaterials. In Carbon Nanomaterials for Biological and Medical Applications, 1st ed.; Ray, S.C., Jana, N.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 205–229. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Zhang, Z.L.; Huang, B.H.; Peng, J.; Zhang, M.; Pang, D.W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008, 41, 5116–5118. [Google Scholar] [CrossRef]
- Tao, H.; Yang, K.; Ma, Z.; Wan, J.; Zhang, Y.; Kang, Z.; Liu, Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 2012, 8, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Esfandiari, N.; Bagheri, Z.; Ehtesabi, H.; Fatahi, Z.; Tavana, H.; Latifi, H. Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon 2019, 5, e02940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Anilkumar, P.; Cao, P.L.; Liu, J.-H.; Luo, P.G.; Tackett, K.N., II; Sahu, S.; Wang, P.; Wang, X.; Sunet, Y.P. Carbon dots of different composition and surface functionalization: Cytotoxicity issues relevant to fluorescence cell imaging. Exp. Biol. Med. 2011, 236, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Ma, J.; Shan, X.; Shao, L.; Zhou, J.; Chen, J.; Feng, H. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: An experimental and theoretical investigation. RSC Adv. 2013, 3, 14571–14579. [Google Scholar] [CrossRef]
- Feng, T.; Ai, X.; An, G.; Yang, P.; Zhao, Y. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016, 10, 4410–4420. [Google Scholar] [CrossRef]
- Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W. Carbon dots: Surface engineering and applications. J. Mater. Chem. B 2016, 21, 5772–5788. [Google Scholar] [CrossRef]
- Ibrahim, M.; Xue, Y.; Ostermann, M.; Sauter, A.; Steinmueller-Nethl, D.; Schweeberg, S.; Krueger, A.; Cimpan, M.R.; Mustafa, K. In vitro cytotoxicity assessment of nanodiamond particles and their osteogenic potential. J. Biomed. Mater. Res. A 2018, 106, 1697–1707. [Google Scholar] [CrossRef]
- Alawdi, S.H.; El-Denshary, E.S.; Safar, M.M.; Eidi, H.; David, M.O.; Abdel-Wahhab, M.A. Neuroprotective Effect of Nanodiamond in Alzheimer’s Disease Rat Model: A Pivotal Role for Modulating NF-κB and STAT3 Signaling. Mol. Neurobiol. 2017, 54, 1906–1918. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, X.J. Nano-carbons as theranostics. Theranostics 2012, 2, 235–237. [Google Scholar] [CrossRef]
- Zhu, M.T.; Feng, W.Y.; Wang, B.; Wang, T.; Gu, Y.Q.; Wang, M.; Wang, Y.; Ouyang, H.; Zhao, Y.L.; Chai, Z.F. Comparative study of pulmonary responses to nano-and submicron-sized ferric oxide in rats. Toxicology 2008, 247, 102–111. [Google Scholar] [CrossRef]
- Kumar, A.; Banerjee, K.; Liljeroth, P. Molecular assembly on two-dimensional materials. Nanotechnology 2017, 28, 082001. [Google Scholar] [CrossRef] [PubMed]
- Dragojević-Simić, V.; Jaćević, V.; Dobrić, S.; Djordjevic, A.; Bokonjić, D.; Bajčetić, M.; Injac, R. Anti-inflammatory activity of fullerenol C60(OH)24 nanoparticles in a model of acute inflammation in rats. Dig. J. Nanomater. Biostruct. 2011, 6, 819–827. [Google Scholar]
- Jaćević, V.; Jović, D.; Kuča, K.; Dragojević-Simić, V.; Dobrić, S.; Trajković, S.; Borišev, I.; Šegrt, Z.; Milovanović, Z.; Bokonjić, D.; et al. Effects of fullerenol nanoparticles and amifostine on radiation-induced tissue damages: Histopathological analysis. J. Appl. Biomed. 2016, 14, 285–297. [Google Scholar] [CrossRef]
- Baker, G.L.; Gupta, A.; Clark, M.L.; Valenzuela, B.R.; Staska, L.M.; Harbo, S.J.; Pierce, J.T.; Dill, J.A. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol. Sci. 2008, 101, 122–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, H.J.; Hutchison, G.R.; Christensen, F.M.; Aschberger, K.; Stone, V. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol. Sci. 2010, 114, 162–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.C.; Kim, D.W.; Shim, Y.H.; Shim, Y.H.; Bang, J.S.; Oh, H.S.; Kim, S.W.; Seo, M.H. In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy. J. Control. Release 2001, 72, 191–202. [Google Scholar] [CrossRef]
- Li, Y.P.; Pei, Y.; Zhang, X.; Gu, Z.G.; Zhou, Z.H.; Yuan, W.F.; Zhou, J.J.; Zhu, J.H.; Gao, X.J. PEGylatedPLGA nanoparticles as protein carriers: Synthesis, preparation and biodistribution in rats. J. Control. Release 2001, 71, 203–211. [Google Scholar] [CrossRef]
- Nielsen, G.D.; Roursgaard, M.; Jensen, K.A.; Poulsen, S.S.; Larsen, S.T. In vivo biology and toxicology of fullerenes and their derivates. Basic Clin. Pharm. Toxicol. 2008, 103, 197–208. [Google Scholar] [CrossRef]
- Aschberger, K.; Johnson, H.J.; Stone, V.; Aitken, R.J.; Tran, C.L.; Hankin, S.M.; Peters, S.A.K.; Christensen, F.M. Review of fullerene toxicity and exposure—Appraisal of a human health risk assesment, based on open literature. Regul. Toxicol. Pharm. 2010, 58, 455–473. [Google Scholar] [CrossRef]
- Ueng, T.H.; Kang, J.H.; Wang, H.W.; Cheng, Y.W.; Chiang, L.Y. Suppresion of microsomal cytochrome P450-dependent monooxygenase and mitochondrial oxidative phosphorylation by fullerenol, polyhydroxylated fullerene C60. Toxicol. Lett. 1997, 93, 29–37. [Google Scholar] [CrossRef]
- Cai, X.; Hao, J.; Zhang, X.; Yu, B.; Ren, J.; Luo, C.; Li, Q.; Huang, Q.; Shi, X.; Li, W.; et al. The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizing-radiation-induced immune and mitochondrial disfynction. Toxicol. Appl. Pharm. 2010, 243, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Jaćević, V.; Djordjevic, A.; Srdjenović, B.; Milić-Tores, V.; Šegrt, Z.; Dragojević-Simić, V.; Kuča, K. Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats. Exp. Mol. Pathol. 2017, 102, 360–369. [Google Scholar] [CrossRef] [PubMed]
Type of CNM | Physico-Chemical Characteristics | Cell Line/Animal | Genotoxicity Testing Method | Concentration/Dose | Outcomes | Mechanisms of Genotoxicity | Ref. |
---|---|---|---|---|---|---|---|
Fullerene | |||||||
C60 | Particle size: 0.7 nm | A549-Human lung carcinoma cells C57BL/6J or gptdelta transgenic male mice | Micronuclei Comet assay | 0.02–200 mg/L 0.2 mg of particles per animal | Genotoxic -clastogenic effects DNA damage in the lungs of mice | nc | [108] |
C60 | Particle size: 407–5117 nm | Female rats | 8-oxodG, RT-PCR | 0.064 or 0.64 mg/kg | Elevated levels of 8-oxodG in the liver and lungs | Indirect (C60 generated oxidatively damaged DNA in rodent organs) | [103] |
C60-Dimethyl sulfoxide (DMSO) suspension | Particle size: 34.95 nm | Adult freshwater fish – Anabas testudineus | Micronuclei, Comet assay | 5 and 10 mg/L | Genotoxic effects | nc | [106] |
C60(OH)24 | - | CHO-K1-Chinese hamster ovary cells | Micronuclei, Chromosomal aberration | 12.4–249 mg/L | No genotoxic effects | nc | [104] |
C60(OH)24 | Particle size: 180 and 90 nm | Human peripheral blood lymphocytes | Micronuclei, Chromosomal aberration | 6.25–249.96 mg/L | No genotoxic effects | nc | [105] |
Nanodiamonds | |||||||
Single-Digit Nanodiamonds | Particle size:50 nm | Insect species – Achetadomesticus (Orthoptera) | Organism-level end-point (lifespan, body weight, consumption, caloric value of feces, reproduction) | 0.02 or 0.2 mg/g dry weight | Genotoxic effect -oxidative damage and feeding disturbances limited to the exposed generation | nc | [109] |
Nanodiamond powder | Particle size: <10 nm | Human blood | Micronuclei, FISH, 8-oxoG, Comet assay | 1–50 mg/L | Genotoxic effect—elevated level of 8-oxoG at 1 µg/mL, and micronuclei (aneugenic activity) at 10 mg/L, but no induction of DNA double strand breaks | Indirect | [110] |
Pristine nanodiamond particles | Particle size: 4–5 nm | C57/BL6-mouse embryonic stem cells | Western blotting-DNA damage and repair biomarkers p53, MOGG-, Rad51, XRCC-4 | 5 or 100 mg/L | Genotoxic effect–oxidized NDs caused more DNA damage than the pristine/raw NDs | nc | [111] |
Carbon nanotubes | |||||||
SWCNT | Particle size: 0.9–1.7 nm Length: <1 μm | Female rats | 8-oxodG | 0.064 or 0.64 mg/kg | Genotoxic effect—elevated levels of 8-oxodG in the liver and lung | Indirect (SWCNT generated oxidatively damaged DNA in rodent organs) | [103] |
SWCNT | Diameter: 1.1 nm Length: 0.5–100 µm | BEAS 2B-a transformed human bronchial epithelial cell line | Micronuclei, Comet assay | 3–360 mg/L | Genotoxic effect | Possibly indirect (contribution by catalyst metals) | [112] |
SWCNT | Diameter: 0.4–1.2 nm Length: 1–3 µm | V79 (lung fibroblast line) S. typhimurium strains YG1024/YG1029 | Comet assay, MN, Ames test | 0–9.6 mg/m2 0–0.240 mg/plate | Genotoxic effect -induction of DNA damage at 3 h/960 mg/m2and 24 h/≥48 μg/cm2; -micronucleus induction at 960 mg/m2; -Ames test | nc | [113] |
SWCNT | Diameter: 1–4 nm Length: 0.5–1 µm | BEAS-2B-Normal human bronchial epithelial cells | Mitotic spindle analysis, Chromosome number–FISH | 0.2–0.8 mg/m2 of culture surface area | Genotoxic effect | Direct (association with DNA, mitotic spindle disruption and errors in chromosome number) | [114] |
MWCNT | Particle size: 15 ± 5 nm (0.03% Fe, 0% Co, and 0% Ni) | BEAS-2B- human bronchial epithelial cells, SAEC-primary small human airway respiratory epithelial cells | Mitotic spindle analysis, Chromosome number–FISH | 0.24–240 mg/m2 of culture surface area | Genotoxic effect at 0.24 mg/m2 errors in chromosome number and mitotic spindle aberrations | Direct | [115] |
MWCNT | Particle size: 5–20 nm Length: 300–2000 nm; Hydrodynamic diameter: 401.3 nm | A549-human lung epithelial cell line | Micronuclei, Western blot (p53) | 10 and 50 mg/L | Genotoxic effect at 10 mg/L/24 h | nc | [116] |
Graphene | |||||||
GO | Thickness: 0.7–1.5 nm Mean diameter: 156.4 nm | Mice | Micronuclei | Intravenously 4 mg/kg | Genotoxic effect | Direct (intercalated into DNA) and indirect (inducing ROS) | [35] |
Thickness: 20–30 layers Lateral dimension: <2 µm | Male rats | Comet assay | Inhalation 0.12, 0.47, and 1.88 mg/L | No genotoxic effects | No increased inflammatory markers | [117] | |
rGO | Particle size: 342 nm Zeta potential: 25 mV Thickness: ∼5 nm | Male rats | Micronuclei | Single tail vein injection of 7 mg/kg, concentration of 1000 mg/L | No genotoxic effects | No inflammatory response | [118] |
Type of CNM | Model System | Receptor/Key Mediator | Signaling Pathways | Biological Impact | Ref. |
---|---|---|---|---|---|
Graphene | |||||
Graphene oxide nanosheets | Macrophage cell RAW264.7 | TLR4, TLR9 | MyD88, TRAF6, NF-κB | Autophagy of macrophages; Inflammation | [129] |
Graphene oxide nanoribbons non-covalently functionalized with PEG-DSPE (O-GNR-PEG-DSPE) | 11 different malignant human cell lines | EGFRs | JAK/STAT; MAPK/ERK (Ras/Raf/MEK/ERK) | Cell proliferation | [130] |
Printex 90 (Carbon black) | Rat lung epithelial cells | EGFR | MAPK/ERK (Ras/Raf/MEK/ERK) | Cell proliferation | [131,132,133] |
β1-integrin | Cell adhesion; Angiogenesis; Migration | ||||
Fullerene | |||||
Fullerenol-1 (13-15 hydroxyl substituents) | A7r5 cells (rat aortic smooth muscle cells, human coronary artery smooth muscle cells | PTK | Protein kinase C | Antiproliferative effect | [134] |
Fullerenol 24 hydroxyl substituents) | Human lung cells (type II alveolar epithelial A549) | No data | p38 MAPK | Nrf2-induced antioxidative defense | [135] |
Carbon Nanotubes | |||||
Long CNT | Met5a mesothelial cells; THP-1 macrophages | TLRs; P2X7 | NF-κB; STAT-1; MAPK; RTK | Inflammation and fibrosis in lungs | [136,137,138] |
SWCNTs | Human mesothelial cells | EGF; PDGF | NF-κB, AP-1, and MAPK (ERK, p38) | ROS-induced inflammation; Apoptosis | [139] |
SWCNTs | Human lung fibroblast (WI-38-VA13) | TGFβ; PDGF | NF-κB | ROS-induced inflammation; Fibroblast-to- myofibroblast transformation | [140] |
SWCNTs | Human lung fibroblasts | TGFβ; VEGF | p38 MAPK | Fibroproliferation Angiogenesis | [141] |
MWCNT | Mouse macrophages (RAW264.7) | NF-κBp65 | NF-κB | Inflammation | [140] |
MWCNTs | Human lung fibroblasts (WI38-VA13) | TGFβ; PDGF | NF-κB | Fibroblast-to- myofibroblast transformation | [140] |
MWCNTs | Human bronchial epithelial cell line (BEAS–2 B) | ERK1; p38; HSP27 | MAPK/ERK | Cell proliferation; Cell adhesion | [142] |
Carbon Dots | |||||
CDs | Yeast cells (Pichia pastoris) | No data | No data | ROS response: Growth inhibition | [143] |
Pristine CDs (negative charge) | Mouse fibroblasts (NIH/3T3) | No data | No data | ROS response; Arrest of the G2/M phase | [58] |
Polyethylenimine-coated CDs (positive charge) | Mouse fibroblasts (NIH/3T3) | No data | No data | Disruption of G0/G1 phase of cell cycle | [58] |
Graphene CDs | HUEVEC cells | O2 | Energy-transfer/Electron-transfer pathways | ROS response | [144] |
Graphene CDs | THP-1-activated macrophages | Bcl2, Bax, Bad | p38 MAPK; NF-κB | Apoptosis | [145] |
Beclin 1; LC3 | Autophagy | ||||
NF-κBp65 | ROS-induced Inflammation | ||||
Nanodiamonds | |||||
NDs | Monoblastoid cells (U937) | TLR4 | NF-κB | Apoptosis; Inflammation | [146] |
NDs | Alzheimer’s Disease Rat Model | NMDA receptors | NF-κB; STAT3 | Neuroprotection—inhibition of Inflammation; Antioxidative defense | [147] |
NDs | Human peripheral lymphocytes | O− | No data | Apoptosis; Oxidative stress | [110] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jović, D.; Jaćević, V.; Kuča, K.; Borišev, I.; Mrdjanovic, J.; Petrovic, D.; Seke, M.; Djordjevic, A. The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity. Nanomaterials 2020, 10, 1508. https://doi.org/10.3390/nano10081508
Jović D, Jaćević V, Kuča K, Borišev I, Mrdjanovic J, Petrovic D, Seke M, Djordjevic A. The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity. Nanomaterials. 2020; 10(8):1508. https://doi.org/10.3390/nano10081508
Chicago/Turabian StyleJović, Danica, Vesna Jaćević, Kamil Kuča, Ivana Borišev, Jasminka Mrdjanovic, Danijela Petrovic, Mariana Seke, and Aleksandar Djordjevic. 2020. "The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity" Nanomaterials 10, no. 8: 1508. https://doi.org/10.3390/nano10081508
APA StyleJović, D., Jaćević, V., Kuča, K., Borišev, I., Mrdjanovic, J., Petrovic, D., Seke, M., & Djordjevic, A. (2020). The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity. Nanomaterials, 10(8), 1508. https://doi.org/10.3390/nano10081508