Epitaxy from a Periodic Y–O Monolayer: Growth of Single-Crystal Hexagonal YAlO3 Perovskite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nakamura, S.; Mukai, T.; Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 1994, 64, 1687–1689. [Google Scholar] [CrossRef]
- Kwo, J.; Hong, M.; Nakahara, S. Growth of rare-earth single crystals by molecular beam epitaxy: The epitaxial relationship between hcp rare earth and bcc niobium. Appl. Phys. Lett. 1986, 49, 319–321. [Google Scholar] [CrossRef] [Green Version]
- Majkrzak, C.F.; Cable, J.W.; Kwo, J.; Hong, M.; McWhan, D.B.; Yafet, Y.; Waszczak, J.V.; Vettier, C. Observation of a Magnetic Antiphase Domain Structure with Long-Range Order in a Synthetic Gd-Y Superlattice. Phys. Rev. Lett. 1986, 56, 2700–2703. [Google Scholar] [CrossRef] [PubMed]
- Kwo, J.; Hong, M.; DiSalvo, F.J.; Waszczak, J.V.; Majkrzak, C.F. Modulated magnetic properties in synthetic rare-earth Gd-Y superlattices. Phys. Rev. B 1987, 35, 7295–7298. [Google Scholar] [CrossRef]
- Baibich, M.N.; Broto, J.M.; Fert, A.; Nguyen Van Dau, F.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475. [Google Scholar] [CrossRef] [Green Version]
- Tung, R.T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 11304. [Google Scholar]
- Hong, M.; Chen, H.S.; Kwo, J.; Kortan, A.R.; Mannaerts, J.P.; Weir, B.E.; Feldman, L.C. MBE growth and properties of Fe3(Al,Si) on GaAs(100). J. Cryst. Growth 1991, 111, 984–988. [Google Scholar] [CrossRef]
- Noh, D.Y.; Hwu, Y.; Kim, H.K.; Hong, M. X-ray-scattering studies of the interfacial structure of Au/GaAs. Phys. Rev. B 1995, 51, 4441–4448. [Google Scholar] [CrossRef]
- Yamane, K.; Hamaya, K.; Ando, Y.; Enomoto, Y.; Yamamoto, K.; Sadoh, T.; Miyao, M. Effect of atomically controlled interfaces on Fermi-level pinning at metal/Ge interfaces. Appl. Phys. Lett. 2010, 96, 162104. [Google Scholar] [CrossRef]
- Hong, M.; Kwo, J.; Kortan, A.R.; Mannaerts, J.P.; Sergent, A.M. Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation. Science 1999, 283, 1897–1900. [Google Scholar] [CrossRef]
- Sowwan, M.; Yacoby, Y.; Pitney, J.; MacHarrie, R.; Hong, M.; Cross, J.; Walko, D.A.; Clarke, R.; Pindak, R.; Stern, E.A. Direct atomic structure determination of epitaxially grown films: Gd2O3 on GaAs(100). Phys. Rev. B 2002, 66, 205311. [Google Scholar] [CrossRef]
- Kwo, J.; Hong, M.; Kortan, A.R.; Queeney, K.T.; Chabal, Y.J.; Mannaerts, J.P.; Boone, T.; Krajewski, J.J.; Sergent, A.M.; Rosamilia, J.M. High ε gate dielectrics Gd2O3 and Y2O3 for silicon. Appl. Phys. Lett. 2000, 77, 130–132. [Google Scholar] [CrossRef]
- Gupta, J.A.; Landheer, D.; Sproule, G.I.; McCaffrey, J.P.; Graham, M.J.; Yang, K.-C.; Lu, Z.-H.; Lennard, W.N. Interfacial layer formation in Gd2O3 films deposited directly on Si(001). Appl. Surf. Sci. 2001, 173, 318–326. [Google Scholar] [CrossRef]
- Dargis, R.; Williams, D.; Smith, R.; Arkun, E.; Semans, S.; Vosters, G.; Lebby, M.; Clark, A. Study of the Structural and Thermal Properties of Single Crystalline Epitaxial Rare-Earth-Metal Oxide Layers Grown on Si(111). ECS Trans. 2011, 41, 161–167. [Google Scholar] [CrossRef]
- Sitaputra, W.; Tsu, R. Defect induced mobility enhancement: Gadolinium oxide (100) on Si(100). Appl. Phys. Lett. 2012, 101, 222903. [Google Scholar] [CrossRef]
- Chaudhuri, A.R.; Fissel, A.; Osten, H.J. Superior dielectric properties for template assisted grown (100) oriented Gd2O3 thin films on Si(100). Appl. Phys. Lett. 2014, 104, 12906. [Google Scholar] [CrossRef]
- Molle, A.; Wiemer, C.; Bhuiyan, M.N.K.; Tallarida, G.; Fanciulli, M.; Pavia, G. Cubic-to-monoclinic phase transition during the epitaxial growth of crystalline Gd2O3 films on Ge(001) substrates. Appl. Phys. Lett. 2007, 90, 193511. [Google Scholar] [CrossRef]
- Hong, M.; Kwo, J.; Chu, S.N.G.; Mannaerts, J.P.; Kortan, A.R.; Ng, H.M.; Cho, A.Y.; Anselm, K.A.; Lee, C.M.; Chyi, J.I. Single-crystal GaN/Gd2O3/GaN heterostructure. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2002, 20, 1274. [Google Scholar] [CrossRef]
- Chang, W.H.; Lee, C.H.; Chang, Y.C.; Chang, P.; Huang, M.L.; Lee, Y.J.; Hsu, C.-H.; Hong, J.M.; Tsai, C.C.; Kwo, J.R.; et al. Nanometer-Thick Single-Crystal Hexagonal Gd2O3 on GaN for Advanced Complementary Metal-Oxide-Semiconductor Technology. Adv. Mater. 2009, 21, 4970–4974. [Google Scholar] [CrossRef]
- Lee, W.C.; Lee, Y.J.; Kwo, J.; Hsu, C.H.; Lee, C.H.; Wu, S.Y.; Ng, H.M.; Hong, M. GaN on Si with nm-thick single-crystal Sc2O3 as a template using molecular beam epitaxy. J. Cryst. Growth 2009, 311, 2006–2009. [Google Scholar] [CrossRef]
- Yamada, S.; Tanikawa, K.; Miyao, M.; Hamaya, K. Atomically Controlled Epitaxial Growth of Single-Crystalline Germanium Films on a Metallic Silicide. Cryst. Growth Des. 2012, 12, 4703–4707. [Google Scholar] [CrossRef] [Green Version]
- Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004, 3, 868–871. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Cheng, C.K.; Chen, K.H.; Fu, C.H.; Chang, T.W.; Hsu, C.H.; Kwo, J.; Hong, M. Single-Crystal Y2O3 Epitaxially on GaAs(001) and (111) Using Atomic Layer Deposition. Materials 2015, 8, 7084–7093. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.Y.; Chen, K.H.; Lin, Y.H.; Cheng, C.K.; Hsu, C.H.; Kwo, J.; Hong, M. Single-crystal atomic layer deposited Y2O3 on GaAs(001)—growth, structural, and electrical characterization. Microelectron. Eng. 2015, 147, 310–313. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, M.; Heo, J.; Ye, P.D.; Gordon, R.G. Heteroepitaxy of single-crystal LaLuO3 on GaAs(111)A by atomic layer deposition. Appl. Phys. Lett. 2010, 97, 162910. [Google Scholar] [CrossRef]
- Wang, X.; Dong, L.; Zhang, J.; Liu, Y.; Ye, P.D.; Gordon, R.G. Heteroepitaxy of La2O3 and La2–xYxO3 on GaAs (111)A by Atomic Layer Deposition: Achieving Low Interface Trap Density. Nano Lett. 2013, 13, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-Y.; Posadas, A.B.; Kwon, S.; Wang, Q.; Kim, M.J.; Demkov, A.A.; Ekerdt, J.G. Cubic crystalline erbium oxide growth on GaN(0001) by atomic layer deposition. J. Appl. Phys. 2017, 122, 215302. [Google Scholar] [CrossRef]
- Kwo, J.; Hong, M.; Trevor, D.J.; Fleming, R.M.; White, A.E.; Farrow, R.C.; Kortan, A.R.; Short, K.T. In situ epitaxial growth of Y1Ba2Cu3O7−x films by molecular beam epitaxy with an activated oxygen source. Appl. Phys. Lett. 1988, 53, 2683–2685. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.Q.; McDaniel, M.D.; Posadas, A.; Demkov, A.A.; Ekerdt, J.G. Growth of crystalline LaAlO3 by atomic layer deposition. Int. Soc. Opt. Photonics 2014, 8987, 898712. [Google Scholar]
- Young, L.B.; Cheng, C.-K.; Lin, K.-Y.; Lin, Y.-H.; Wan, H.-W.; Cai, R.-F.; Lo, S.-C.; Li, M.-Y.; Hsu, C.-H.; Kwo, J.; et al. Epitaxy of High-Quality Single-Crystal Hexagonal Perovskite YAlO3 on GaAs(111)A Using Laminated Atomic Layer Deposition. Cryst. Growth Des. 2019, 19, 2030–2036. [Google Scholar] [CrossRef]
- Kozlovskiy, A.; Kenzhina, I.; Zdorovets, M. Synthesis, phase composition and magnetic properties of double perovskites of A(FeM)O4-x type (A=Ce; M=Ti). Ceram. Int. 2019, 45, 8669–8676. [Google Scholar] [CrossRef]
- Fukai, K.; Hidaka, K.; Aoki, M.; Abe, K. Preparation and properties of uniform fine perovskite powders by hydrothermal synthesis. Ceram. Int. 1990, 16, 285–290. [Google Scholar] [CrossRef]
- Yuan, X.; Shen, M.; Fang, L.; Zheng, F.; Wu, X.; Shen, J. The effect of calcium concentration on the photoluminescence of CaTiO3: Pr3+ films prepared by the sol–gel method. Opt. Mater. 2009, 31, 1248–1251. [Google Scholar] [CrossRef]
- Hong, M. New frontiers of molecular beam epitaxy with in-situ processing. J. Cryst. Growth 1995, 150, 277–284. [Google Scholar] [CrossRef]
- Lin, K.Y.; Wan, H.W.; Chen, K.H.M.; Fanchiang, Y.T.; Chen, W.S.; Lin, Y.H.; Cheng, Y.T.; Chen, C.C.; Lin, H.Y.; Young, L.B.; et al. Molecular beam epitaxy, atomic layer deposition, and multiple functions connected via ultra-high vacuum. J. Cryst. Growth 2019, 512, 223–229. [Google Scholar] [CrossRef]
- Pi, T.-W.; Chen, B.-R.; Huang, M.-L.; Chiang, T.-H.; Wertheim, G.K.; Hong, M.; Kwo, J. Surface-Atom Core-Level Shift in GaAs(111)A-2×2. J. Phys. Soc. Jpn. 2012, 81, 64603. [Google Scholar] [CrossRef]
- Cheng, C.-P.; Chen, W.-S.; Cheng, Y.-T.; Wan, H.-W.; Lin, K.-Y.; Young, L.B.; Yang, C.-Y.; Pi, T.-W.; Kwo, J.; Hong, M. In situ direct determination of band offset and interfacial dipole potential of a laminar ALD-Y2O3 on a p-type GaAs(0 0 1)-4 × 6 surface. J. Phys. D Appl. Phys. 2018, 51, 405102. [Google Scholar] [CrossRef]
- Pi, T.W.; Lin, H.Y.; Chiang, T.H.; Liu, Y.T.; Chang, Y.C.; Lin, T.D.; Wertheim, G.K.; Kwo, J.; Hong, M. Surface atoms core-level shifts in single crystal GaAs surfaces: Interactions with trimethylaluminum and water prepared by atomic layer deposition. Appl. Surf. Sci. 2013, 284, 601–610. [Google Scholar] [CrossRef]
- Cheng, C.-P.; Chen, W.-S.; Cheng, Y.-T.; Wan, H.-W.; Yang, C.-Y.; Pi, T.-W.; Kwo, J.; Hong, M. Atomic Nature of the Growth Mechanism of Atomic Layer Deposited High-κ Y2O3 on GaAs(001)-4 × 6 Based on in Situ Synchrotron Radiation Photoelectron Spectroscopy. ACS Omega 2018, 3, 2111–2118. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-H.; Fu, C.-H.; Lin, K.-Y.; Chen, K.-H.; Chang, T.-W.; Kwo, J.R.; Hong, M. Low interfacial trap density and high-temperature thermal stability in atomic layer deposited single crystal Y2O3/n-GaAs(001). Appl. Phys. Express 2016, 9, 81501. [Google Scholar] [CrossRef]
- Wan, H.W.; Lin, K.Y.; Cheng, C.K.; Su, Y.K.; Lee, W.C.; Hsu, C.H.; Pi, T.W.; Kwo, J.; Hong, M. GaAs metal-oxide-semiconductor push with molecular beam epitaxy Y2O3—In comparison with atomic layer deposited Al2O3. J. Cryst. Growth 2017, 477, 179–182. [Google Scholar] [CrossRef]
- Ohtake, A.; Nakamura, J.; Komura, T.; Hanada, T.; Yao, T.; Kuramochi, H.; Ozeki, M. Surface structures of GaAs{111}A, B-(2x2). Phys. Rev. B 2001, 64, 45318. [Google Scholar] [CrossRef]
- Ohtake, A.; Kocán, P.; Seino, K.; Schmidt, W.G.; Koguchi, N. Ga-Rich Limit of Surface Reconstructions on GaAs(001): Atomic Structure of the (4×6) Phase. Phys. Rev. Lett. 2004, 93, 266101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Voyles, P.M.; Muller, D.A.; Grazul, J.L.; Citrin, P.H.; Gossmann, H.J.L. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 2002, 416, 826–829. [Google Scholar] [CrossRef]
- Findlay, S.D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Yamamoto, T.; Ikuhara, Y. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 2009, 95, 191913. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, M.; Cheng, C.-K.; Lin, Y.-H.; Young, L.B.; Cai, R.-F.; Hsu, C.-H.; Wu, C.-T.; Kwo, J. Epitaxy from a Periodic Y–O Monolayer: Growth of Single-Crystal Hexagonal YAlO3 Perovskite. Nanomaterials 2020, 10, 1515. https://doi.org/10.3390/nano10081515
Hong M, Cheng C-K, Lin Y-H, Young LB, Cai R-F, Hsu C-H, Wu C-T, Kwo J. Epitaxy from a Periodic Y–O Monolayer: Growth of Single-Crystal Hexagonal YAlO3 Perovskite. Nanomaterials. 2020; 10(8):1515. https://doi.org/10.3390/nano10081515
Chicago/Turabian StyleHong, Minghwei, Chao-Kai Cheng, Yen-Hsun Lin, Lawrence Boyu Young, Ren-Fong Cai, Chia-Hung Hsu, Chien-Ting Wu, and Jueinai Kwo. 2020. "Epitaxy from a Periodic Y–O Monolayer: Growth of Single-Crystal Hexagonal YAlO3 Perovskite" Nanomaterials 10, no. 8: 1515. https://doi.org/10.3390/nano10081515
APA StyleHong, M., Cheng, C. -K., Lin, Y. -H., Young, L. B., Cai, R. -F., Hsu, C. -H., Wu, C. -T., & Kwo, J. (2020). Epitaxy from a Periodic Y–O Monolayer: Growth of Single-Crystal Hexagonal YAlO3 Perovskite. Nanomaterials, 10(8), 1515. https://doi.org/10.3390/nano10081515