Nanostructured Color Filters: A Review of Recent Developments
Abstract
:1. Introduction
2. Thin Films Color Filters
3. Plasmons
3.1. Surface Plasmon Polaritons
3.1.1. Otto Configuration
3.1.2. 1D Diffraction Grating
3.2. Localized Surface Plasmonic Resonances
3.2.1. Nanoholes
3.2.2. Nanohole-Nanodisk Hybrid Color Filters
3.2.3. Metasurfaces
3.2.4. Gap Surface Plasmons
4. Dielectric-Based Color Filter
5. Liquid Crystal-Based Plasmonic Color Filters
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AC | Alternating Current |
BSI | Backside Illumination |
CCD | Charged coupled Device |
CIE | Commission internationale de l’éclairage |
CIS | CMOS Image Sensor |
CMY | Cyan Magenta Yellow |
CMOS | Complementary Metal Oxide Semiconductor |
EBL | Electron-Beam Lithography |
ED | Electric Dipole |
ELT | Extraordinary Low Transmission |
EOT | Extraordinary Transmission |
FIB | Focused Ion Beam |
FWHM | Full Width Half Maximum |
GSR | Gap Surface Plasmon |
ITO | Indium Titanium Oxide |
LC | Liquid Crystal |
LCD | Liquid Crystal Display |
LSP | Local Surface Plasmon |
LSPP | Local Surface Plasmon Polaritons |
LSPR | Local Surface Plasmon Resonance |
MD | Magnetic Dipole |
MIMFP | Metal-Insulator-Metal Fabry-Perot |
ND | Nano Disks |
NIL | Nanoimprint Lithography |
PMMA | Poly Methyl MethAcrylate |
RGB | Red Green Blue |
SEM | Scanning Electron Microscope |
SERS | Surface Enhanced Raman Spectroscopy |
SLR | Surface Lattice Resonance |
SPR | Surface Plasmon Resonance |
sRGB | standarad Red Green Blue |
TN | Twisted Nematic |
References
- Wyszecki, G.; Stiles, W.S. Color Science: Concepts and Methods, Quantitative Data and Formulae; John Wiley & Sons: Hoboken, NJ, USA, 1982. [Google Scholar]
- Bayer, B.E. Color Imaging Array. US Patent 3971065, 20 July 1976. [Google Scholar]
- Meth-Cohn, O.; Smith, M. What did W. H. Perkin actually make when he oxidised aniline to obtain mauveine? J. Chem. Soc. Perkin Trans. 1 1994, 1, 5–7. [Google Scholar] [CrossRef]
- Oprian, D.D.; Asenjo, A.B.; Lee, N.; Pelletier, S.L. Design, chemical synthesis, and expression of genes for the three human color vision pigments. Biochemistry 1991, 30, 11367–11372. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Britton, G.; Vicario, I.M.; Heredia, F.J. Relationship between the colour and the chemical structure of carotenoid pigments. Food Chem. 2007, 101, 1145–1150. [Google Scholar] [CrossRef]
- Hao, Z.; Iqbal, A. Some aspects of organic pigments. Chem. Soc. Rev. 1997, 26, 203–213. [Google Scholar] [CrossRef]
- Yue, W.; Gao, S.; Lee, S.; Kim, E.; Choi, D. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors. Laser Photonics Rev. 2017, 11, 1600285. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, M.; Ruan, Q.; Zhou, Y.; Chen, Y.; Dai, P.; Yang, Z.; Lin, Z.; Long, Y.; Li, Y. Stepwise-nanocavity-assisted transmissive color filter array microprints. Research 2018, 2018, 8109054. [Google Scholar] [CrossRef] [Green Version]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.; Thio, T.; Wolff, P. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667. [Google Scholar] [CrossRef]
- Macleod, H.A.; Macleod, H.A. Thin-Film Optical Filters; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Nanoimprint lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1996, 14, 4129–4133. [Google Scholar] [CrossRef]
- Park, C.S.; Shrestha, V.R.; Lee, S.S.; Choi, D.Y. Trans-reflective color filters based on a phase compensated etalon enabling adjustable color saturation. Sci. Rep. 2016, 6, 25496. [Google Scholar] [CrossRef] [Green Version]
- Chhowalla, M.; Teo, K.; Ducati, C.; Rupesinghe, N.; Amaratunga, G.; Ferrari, A.; Roy, D.; Robertson, J.; Milne, W. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 2001, 90, 5308–5317. [Google Scholar] [CrossRef]
- Ghiradella, H. Light and color on the wing: Structural colors in butterflies and moths. Appl. Opt. 1991, 30, 3492–3500. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, S.; Yoshioka, S.; Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 2008, 71, 076401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Tang, Y.; Meng, J.; Wang, G.; Zhou, H.; Fan, T.; Zhang, D. Polarization-sensitive color in butterfly scales: Polarization conversion from ridges with reflecting elements. Opt. Express 2014, 22, 27437–27450. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, X.; Liu, S.; Wong, C.; Chu, S. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 2016, 10, 1788–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, X.; Kamin, S.; Liu, N. Dynamic plasmonic colour display. Nat. Commun. 2017, 8, 14606. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Yoon, Y.T.; Shrestha, V.R.; Park, C.S.; Lee, S.S.; Kim, E.S. Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating. Opt. Express 2013, 21, 28783–28793. [Google Scholar] [CrossRef]
- Song, M.; Wang, D.; Peana, S.; Choudhury, S.; Nyga, P.; Kudyshev, Z.A.; Yu, H.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Colors with plasmonic nanostructures: A full-spectrum review. Appl. Phys. Rev. 2019, 6, 041308. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Jang, J.; Jeong, H.; Rho, J. Plasmonic-and dielectric-based structural coloring: From fundamentals to practical applications. Nano Converg. 2018, 5, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Nemati, A.; Wang, Q.; Hong, M.; Teng, J. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 2018, 1, 180009. [Google Scholar] [CrossRef] [Green Version]
- Yariv, A.; Yeh, P. Photonics: Optical Electronics in Modern Communications; Oxford Univ.: Oxford, UK, 2006. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Minas, G.; Ribeiro, J.; Martins, J.S.; Wolffenbuttel, R.; Correia, J. An array of Fabry-Perot optical-channels for biological fluids analysis. Sens. Actuators A Phys. 2004, 115, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Minas, G.; Wolffenbuttel, R.; Correia, J. An array of highly selective Fabry–Perot optical channels for biological fluid analysis by optical absorption using a white light source for illumination. J. Opt. A Pure Appl. Opt. 2006, 8, 272. [Google Scholar] [CrossRef] [Green Version]
- Spisser, A.; Ledantec, R.; Seassal, C.; Leclercq, J.L.; Benyattou, T.; Rondi, D.; Blondeau, R.; Guillot, G.; Viktorovitch, P. Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications. IEEE Photonics Technol. Lett. 1998, 10, 1259–1261. [Google Scholar] [CrossRef]
- Lee, P.H.; Lan, Y.C. Plasmonic Waveguide Filters Based on Tunneling and Cavity Effects. Plasmonics 2010, 5, 417–422. [Google Scholar] [CrossRef]
- Yu, Q.; Zhou, X. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sens. 2011, 1, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.; Ali, M.M.; Lai, M.H.; Lim, K.S.; Ahmad, H. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: A review. Sensors 2014, 14, 7451–7488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, R.; Janeiro, R.; Viegas, J. Optical fibre Fabry-Pérot interferometer based on inline microcavities for salinity and temperature sensing. Sci. Rep. 2019, 9, 9556. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Deng, H.; Jiao, X.; He, S.; Gao, J.; Yang, X. Infrared perfect absorber based on nanowire metamaterial cavities. Opt. Lett. 2013, 38, 1179–1181. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Huang, S.; Pan, P.; Chen, J.; Liu, G.; Gu, G. Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation. ACS Appl. Mater. Interfaces 2015, 7, 4962–4968. [Google Scholar] [CrossRef]
- Durmaz, H.; Cetin, A.E.; Li, Y.; Paiella, R. A Polarization Insensitive Wide-Band Perfect Absorber. Adv. Eng. Mater. 2019, 21, 1900188. [Google Scholar] [CrossRef]
- Wang, W.; Qu, Y.; Du, K.; Bai, S.; Tian, J.; Pan, M.; Ye, H.; Qiu, M.; Li, Q. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals. Appl. Phys. Lett. 2017, 110, 101101. [Google Scholar] [CrossRef]
- Yoon, Y.T.; Lee, S.S. Transmission type color filter incorporating a silver film based etalon. Opt. Express 2010, 18, 5344–5349. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Butun, S.; Aydin, K. Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films. ACS Photonics 2015, 2, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Park, C.S.; Shrestha, V.R.; Lee, S.S.; Kim, E.S.; Choi, D.Y. Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay. Sci. Rep. 2015, 5, 8467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, D.; Zhang, M. Quarter-wave design criteria for omnidirectional structural colors. J. Mod. Opt. 2010, 57, 1180–1188. [Google Scholar] [CrossRef]
- Kim, J.; Oh, H.; Kang, B.; Hong, J.; Rha, J.J.; Lee, M. Broadband Visible and Near-Infrared Absorbers Implemented with Planar Nanolayered Stacks. ACS Appl. Nano Mater. 2020, 3, 2978–2986. [Google Scholar] [CrossRef]
- Lee, K.; Seo, S.; Lee, J.Y.; Guo, L.J. Strong Resonance Effect in a Lossy Medium-Based Optical Cavity for Angle Robust Spectrum Filters. Adv. Mater. 2014, 26, 6324–6328. [Google Scholar] [CrossRef]
- Kats, M.A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20. [Google Scholar] [CrossRef]
- Mirshafieyan, S.S.; Guo, J. Silicon colors: Spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability. Opt. Express 2014, 22, 31545–31554. [Google Scholar] [CrossRef]
- Lee, K.; Han, S.Y.; Park, H.J. Omnidirectional Flexible Transmissive Structural Colors with High-Color-Purity and High-Efficiency Exploiting Multicavity Resonances. Adv. Opt. Mater. 2017, 5, 1700284. [Google Scholar] [CrossRef]
- Lee, K.T.; Han, S.Y.; Li, Z.; Baac, H.W.; Park, H.J. Flexible High-Color-Purity Structural Color Filters Based on a Higher-Order Optical Resonance Suppression. Sci. Rep. 2019, 9, 14917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Palacios, E.; Butun, S.; Kocer, H.; Aydin, K. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci. Rep. 2015, 5, 15137. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Shen, W.; Zhang, Y.; Li, K.; Fang, X.; Zhang, X.; Liu, X. Compact multilayer film structure for angle insensitive color filtering. Sci. Rep. 2015, 5, 9285. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhou, Y.; Chen, Y.; Wang, Y.; Dai, P.; Zhang, Z.; Duan, H. Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber. Adv. Opt. Mater. 2016, 4, 1196–1202. [Google Scholar] [CrossRef]
- Kim, J.; Oh, H.; Seo, M.; Lee, M. Generation of Reflection Colors from Metal–Insulator–Metal Cavity Structure Enabled by Thickness-Dependent Refractive Indices of Metal Thin Film. ACS Photonics 2019, 6, 2342–2349. [Google Scholar] [CrossRef]
- Gartia, M.R.; Hsiao, A.; Pokhriyal, A.; Seo, S.; Kulsharova, G.; Cunningham, B.T.; Bond, T.C.; Liu, G.L. Colorimetric plasmon resonance imaging using nano lycurgus cup arrays. Adv. Opt. Mater. 2013, 1, 68–76. [Google Scholar] [CrossRef]
- Colomban, P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: Solid state chemistry, spectroscopy and nanostructure. J. Nano Res. Trans. Tech. Publ. 2009, 8, 109–132. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, S.; Maekawa, A.; Kim, S.C.; Fujii, M. Mechanism of enhanced light emission from an emitting layer embedded in metal-insulator-metal structures. Phys. Rev. B 2010, 82, 035441. [Google Scholar] [CrossRef]
- Gao, Y.; Murai, S.; Zhang, F.; Tamura, S.; Tomita, K.; Tanaka, K. Enhancing upconversion photoluminescence by plasmonic-photonic hybrid mode. Opt. Express 2020, 28, 886–897. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, L.; Wang, L. DNA-Functionalized Plasmonic Nanomaterials for Optical Biosensing. Biotechnol. J. 2020, 15, 1800741. [Google Scholar] [CrossRef]
- Han, X.; Liu, K.; Sun, C. Plasmonics for Biosensing. Materials 2019, 12, 1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Sugioka, K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electron. Adv. 2019, 2, 190002. [Google Scholar] [CrossRef] [Green Version]
- Valev, V.K.; Denkova, D.; Zheng, X.; Kuznetsov, A.I.; Reinhardt, C.; Chichkov, B.N.; Tsutsumanova, G.; Osley, E.J.; Petkov, V.; De Clercq, B. Plasmon-enhanced sub-wavelength laser ablation: Plasmonic nanojets. Adv. Mater. 2012, 24, OP29–OP35. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; You, J.; Chen, C.C.; Hsu, W.C.; Tan, H.r.; Zhang, X.W.; Hong, Z.; Yang, Y. Plasmonic polymer tandem solar cell. ACS Nano 2011, 5, 6210–6217. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Pillai, S. Harnessing plasmonics for solar cells. Nat. Photonics 2012, 6, 130–132. [Google Scholar] [CrossRef]
- Pahuja, A.; Parihar, M.S.; Kumar, V.D. Performance enhancement of thin-film solar cell using Yagi–Uda nanoantenna array embedded inside the anti-reflection coating. Appl. Phys. A 2020, 126, 70. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.; Huang, Z.; Lin, W.; Lin, L.; Lin, F.; Wong, K.; Lin, H. Microcavity-Embedded, Colour-Tuneable, Transparent Organic Solar Cells. Adv. Mater. 2014, 26, 1129–1134. [Google Scholar] [CrossRef]
- Tao, T.; Zhi, T.; Liu, B.; Chen, P.; Xie, Z.; Zhao, H.; Ren, F.; Chen, D.; Zheng, Y.; Zhang, R. Electron-Beam-Driven III-Nitride Plasmonic Nanolasers in the Deep-UV and Visible Region. Small 2020, 16, 1906205. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Ren, M.; Zhao, W.; Li, R.; Fan, C.Z.; Liang, E.; Li, Y.; Ding, P.; He, J. Double-wavelength nanolaser based on strong coupling of localized and propagating surface plasmon. J. Phys. D Appl. Phys. 2020, 53, 135108. [Google Scholar] [CrossRef]
- Lu, Y.J.; Kim, J.; Chen, H.Y.; Wu, C.; Dabidian, N.; Sanders, C.E.; Wang, C.Y.; Lu, M.Y.; Li, B.H.; Qiu, X. Plasmonic nanolaser using epitaxially grown silver film. Science 2012, 337, 450–453. [Google Scholar] [CrossRef]
- Yan, S.; An, R.; Zou, Y.; Yang, N.; Zhang, Y. Fabrication of polymer colloidal/Au composite nanofilms for stable and reusable SERS-active substrates with highly-dense hotspots. Sens. Actuators B Chem. 2020, 302, 127107. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, F. Spatial Raman mapping investigation of SERS performance related to localized surface plasmons. Nano Res. 2020, 13, 138–144. [Google Scholar] [CrossRef]
- Bozhevolnyi, S. Plasmonic Nanoguides and Circuits; Pan Stanford Publishing: Singapore, 2009. [Google Scholar]
- Maier, S.A.; Kik, P.G.; Atwater, H.A.; Meltzer, S.; Harel, E.; Koel, B.E.; Requicha, A.A.G. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2003, 2, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Quinten, M.; Leitner, A.; Krenn, J.R.; Aussenegg, F.R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 1998, 23, 1331–1333. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ishihara, T. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 2004, 84, 4780–4782. [Google Scholar] [CrossRef]
- Gao, P.; Pu, M.; Ma, X.; Li, X.; Guo, Y.; Wang, C.; Zhao, Z.; Luo, X. Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm. Nanoscale 2020, 12, 2415–2421. [Google Scholar] [CrossRef]
- Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. Lond. 1902, 18, 269. [Google Scholar] [CrossRef]
- Fano, U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA 1941, 31, 213–222. [Google Scholar] [CrossRef]
- Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A Hadron. Nucl. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Radiative decay of non radiative surface plasmons excited by light. Z. Naturforschung A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Boardman, A.D. Electromagnetic Surface Modes; John Wiley & Sons: Hoboken, NJ, USA, 1982. [Google Scholar]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824. [Google Scholar] [CrossRef]
- Raether, H. Surface plasmons on smooth surfaces. In Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Raether, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 4–39. [Google Scholar] [CrossRef]
- Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 1983, 4, 299–304. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, UK, 1999; pp. 752–758. [Google Scholar]
- Dostálek, J.; Homola, J.; Miler, M. Rich information format surface plasmon resonance biosensor based on array of diffraction gratings. Sens. Actuators B Chem. 2005, 107, 154–161. [Google Scholar] [CrossRef]
- Wang, L.; Sang, T.; Gao, J.; Yin, X.; Qi, H. High-performance sensor achieved by hybrid guide-mode resonance/surface plasmon resonance platform. Appl. Opt. 2018, 57, 7338–7343. [Google Scholar] [CrossRef] [PubMed]
- Tokel, O.; Yildiz, U.H.; Inci, F.; Durmus, N.G.; Ekiz, O.O.; Turker, B.; Cetin, C.; Rao, S.; Sridhar, K.; Natarajan, N. Portable microfluidic integrated plasmonic platform for pathogen detection. Sci. Rep. 2015, 5, 1–9. [Google Scholar]
- Homola, J.; Piliarik, M. Surface plasmon resonance (SPR) sensors. In Surface Plasmon Resonance Based Sensors; Springer: Berlin/Heidelberg, Germany, 2006; pp. 45–67. [Google Scholar]
- Putnin, T.; Lertvachirapaiboon, C.; Ishikawa, R.; Shinbo, K.; Kato, K.; Ekgasit, S.; Ounnunkad, K.; Baba, A. Enhanced organic solar cell performance: Multiple surface plasmon resonance and incorporation of silver nanodisks into a grating-structure electrode. Opto-Electron. Adv. 2019, 2, 190010. [Google Scholar] [CrossRef]
- Muttikulangara, S.S.; Baranski, M.; Rehman, S.; Hu, L.; Miao, J. MEMS tunable diffraction grating for spaceborne imaging spectroscopic applications. Sensors 2017, 17, 2372. [Google Scholar] [CrossRef]
- Wang, F.; Shen, Y.R. General Properties of Local Plasmons in Metal Nanostructures. Phys. Rev. Lett. 2006, 97, 206806. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Yoon, Y.T.; Lee, S.S. Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure. Opt. Express 2012, 20, 23769–23777. [Google Scholar] [CrossRef]
- Kaplan, A.F.; Xu, T.; Jay Guo, L. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl. Phys. Lett. 2011, 99, 143111. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85–87. [Google Scholar] [CrossRef]
- Yoon, Y.T.; Park, C.H.; Lee, S.S. Highly efficient color filter incorporating a thin metal–dielectric resonant structure. Appl. Phys. Express 2012, 5, 022501. [Google Scholar] [CrossRef]
- Mazulquim, D.B.; Lee, K.J.; Yoon, J.W.; Muniz, L.V.; Borges, B.H.V.; Neto, L.G.; Magnusson, R. Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly. Opt. Express 2014, 22, 30843–30851. [Google Scholar] [CrossRef] [PubMed]
- Rayleigh, L. On the dynamical theory of gratings. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1907, 79, 399–416. [Google Scholar]
- Uddin, M.J.; Magnusson, R. Efficient guided-mode-resonant tunable color filters. IEEE Photonics Technol. Lett. 2012, 24, 1552–1554. [Google Scholar] [CrossRef]
- Koirala, I.; Shrestha, V.R.; Park, C.S.; Lee, S.S.; Choi, D.Y. Polarization-controlled broad color palette based on an ultrathin one-dimensional resonant grating structure. Sci. Rep. 2017, 7, 40073. [Google Scholar] [CrossRef] [Green Version]
- Koirala, I.; Shrestha, V.R.; Park, C.S.; Gao, S.; Lee, S.S.; Choi, D.Y. All Dielectric Transmissive Structural Multicolor Pixel Incorporating a Resonant Grating in Hydrogenated Amorphous Silicon. Sci. Rep. 2017, 7, 1–7. [Google Scholar]
- Lee, K.T.; Jang, J.Y.; Park, S.J.; Thakur, U.K.; Ji, C.; Guo, L.J.; Park, H.J. Subwavelength nanocavity for flexible structural transmissive color generation with a wide viewing angle. Optica 2016, 3, 1489–1495. [Google Scholar] [CrossRef]
- Wu, Y.K.R.; Hollowell, A.E.; Zhang, C.; Guo, L.J. Angle-Insensitive Structural Colours based on Metallic Nanocavities and Coloured Pixels beyond the Diffraction Limit. Sci. Rep. 2013, 3, 1194. [Google Scholar] [CrossRef] [Green Version]
- Zeng, B.; Gao, Y.; Bartoli, F.J. Ultrathin Nanostructured Metals for Highly Transmissive Plasmonic Subtractive Color Filters. Sci. Rep. 2013, 3, 2840. [Google Scholar] [CrossRef] [Green Version]
- Reibold, D.; Shao, F.; Erdmann, A.; Peschel, U. Extraordinary low transmission effects for ultra-thin patterned metal films. Opt. Express 2009, 17, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Shi, H.; Wu, Y.; Kaplan, A.F.; Ok, J.G.; Guo, L.J. Structural colors: From plasmonic to carbon nanostructures. Small 2011, 7, 3128–3136. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wu, Y.K.; Luo, X.; Guo, L.J. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 2010, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Diest, K.; Dionne, J.A.; Spain, M.; Atwater, H.A. Tunable Color Filters Based on Metal–Insulator–Metal Resonators. Nano Lett. 2009, 9, 2579–2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Gao, H.; Odom, T.W. Toward broadband plasmonics: Tuning dispersion in rhombic plasmonic crystals. ACS Nano 2010, 4, 1241–1247. [Google Scholar] [CrossRef]
- Kang, G.; Tan, Q.; Wang, X.; Jin, G. Achromatic phase retarder applied to MWIR & LWIR dual-band. Opt. Express 2010, 18, 1695–1703. [Google Scholar]
- Shrestha, V.R.; Park, C.S.; Lee, S.S. Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response. Opt. Express 2014, 22, 3691–3704. [Google Scholar] [CrossRef]
- Duempelmann, L.; Luu-Dinh, A.; Gallinet, B.; Novotny, L. Four-fold color filter based on plasmonic phase retarder. ACS Photonics 2016, 3, 190–196. [Google Scholar] [CrossRef]
- Mie, G. Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann. Phys 1976, 25, 377–445. [Google Scholar]
- Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [Green Version]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef] [PubMed]
- Špačková, B.; Wrobel, P.; Bocková, M.; Homola, J. Optical Biosensors Based on Plasmonic Nanostructures: A Review. Proc. IEEE 2016, 104, 2380–2408. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Negre, C.F.; Sánchez, C.G. Optical properties of metal nanoclusters from an atomistic point of view. In Metal Clusters and Nanoalloys; Springer: Berlin/Heidelberg, Germany, 2013; pp. 105–157. [Google Scholar]
- Haes, A.J.; Van Duyne, R.P. A unified view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2004, 379, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L. Particle plasmons: Why shape matters. Am. J. Phys. 2016, 84, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Halas, N.J.; Lal, S.; Chang, W.S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961. [Google Scholar] [CrossRef]
- Markel, V.A. Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres. J. Phys. B At. Mol. Opt. Phys. 2005, 38, 115. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, S.; Schaafsma, M.; Berrier, A.; Rivas, J.G. Collective resonances in plasmonic crystals: Size matters. Phys. B Condens. Matter 2012, 407, 4081–4085. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; Janel, N.; Schatz, G.C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 2004, 120, 10871–10875. [Google Scholar] [CrossRef]
- De Abajo, F.G. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 2007, 79, 1267. [Google Scholar] [CrossRef] [Green Version]
- Hicks, E.M.; Zou, S.; Schatz, G.C.; Spears, K.G.; Van Duyne, R.P.; Gunnarsson, L.; Rindzevicius, T.; Kasemo, B.; Käll, M. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 2005, 5, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Lopatynskyi, A.; Lytvyn, V.; Mogylnyi, I.; Rachkov, O.; Soldatkin, O.; Chegel, V. Smart nanocarriers for drug delivery: Controllable LSPR tuning. Semicond. Phys. Quantum Electron. Optoelectron. 2016, 19, 358–365. [Google Scholar] [CrossRef]
- Pang, L.; Freeman, L.M.; Chen, H.M.; Gu, Q.; Fainman, Y. Handbook of Surface Science; Richardson, N.V., Holloway, S., Eds.; North-Holland: Amsterdam, The Netherlands, 2014; Volume 4, pp. 399–428. [Google Scholar] [CrossRef]
- Choi, J.; Kim, K.; Oh, Y.; Kim, A.L.; Kim, S.Y.; Shin, J.; Kim, D. Extraordinary Transmission-based Plasmonic Nanoarrays for Axially Super-Resolved Cell Imaging. Adv. Opt. Mater. 2014, 2, 48–55. [Google Scholar] [CrossRef]
- Inoue, D.; Miura, A.; Nomura, T.; Fujikawa, H.; Sato, K.; Ikeda, N.; Tsuya, D.; Sugimoto, Y.; Koide, Y. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl. Phys. Lett. 2011, 98, 093113. [Google Scholar] [CrossRef]
- Shrestha, V.R.; Lee, S.S.; Kim, E.S.; Choi, D.Y. Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array. Sci. Rep. 2015, 5, 12450. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.L.; Chen, P.W.; Wu, S.H.; Huang, J.B.; Yang, S.Y.; Wei, P.K. Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films. ACS Nano 2012, 6, 2931–2939. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.A.; Lei, D.Y.; Wondraczek, L.; Nazabal, V.; Maier, S.A. Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat. Commun. 2012, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jaywant, S.A.; Arif, K.M. A Comprehensive Review of Microfluidic Water Quality Monitoring Sensors. Sensors 2019, 19, 4781. [Google Scholar] [CrossRef] [Green Version]
- Zeng, B.; Yang, X.; Wang, C.; Luo, X. Plasmonic interference nanolithography with a double-layer planar silver lens structure. Opt. Express 2009, 17, 16783–16791. [Google Scholar] [CrossRef]
- Sun, L.; Hu, X.; Xu, Y.; Wu, Q.; Shi, B.; Ye, M.; Wang, L.; Zhao, J.; Li, X.; Wu, Y. Influence of structural parameters to polarization-independent color-filter behavior in ultrathin Ag films. Opt. Commun. 2014, 333, 16–21. [Google Scholar] [CrossRef]
- Wurtz, G.A.; Pollard, R.; Hendren, W.; Wiederrecht, G.P.; Gosztola, D.J.; Podolskiy, V.A.; Zayats, A.V. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotechnol. 2011, 6, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Hakala, T.K.; Törmä, P. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays. Phys. Rev. B 2017, 95, 155423. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Sun, Z.; Ni, W.; Woo, K.C.; Lin, H.; Sun, L.; Yan, C.; Wang, J. Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes. Small 2009, 5, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Su, K.H.; Wei, Q.H.; Zhang, X.; Mock, J.; Smith, D.R.; Schultz, S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003, 3, 1087–1090. [Google Scholar] [CrossRef]
- Wang, H.; Halas, N.J. Plasmonic Nanoparticle Heterodimers in a Semiembedded Geometry Fabricated by Stepwise Upright Assembly. Nano Lett. 2006, 6, 2945–2948. [Google Scholar] [CrossRef]
- Langhammer, C.; Schwind, M.; Kasemo, B.; Zorić, I. Localized Surface Plasmon Resonances in Aluminum Nanodisks. Nano Lett. 2008, 8, 1461–1471. [Google Scholar] [CrossRef]
- Do, Y.S.; Park, J.H.; Hwang, B.Y.; Lee, S.; Ju, B.; Choi, K.C. Plasmonic color filter and its fabrication for large-area applications. Adv. Opt. Mater. 2013, 1, 133–138. [Google Scholar] [CrossRef]
- Goh, X.M.; Zheng, Y.; Tan, S.J.; Zhang, L.; Kumar, K.; Qiu, C.W.; Yang, J.K.W. Three-dimensional plasmonic stereoscopic prints in full colour. Nat. Commun. 2014, 5, 5361. [Google Scholar] [CrossRef]
- Parsons, J.; Hendry, E.; Burrows, C.P.; Auguié, B.; Sambles, J.R.; Barnes, W.L. Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys. Rev. B 2009, 79, 073412. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Yoon, Y.T.; Lee, S.S.; Kim, S.H.; Lee, K.D. Color filter based on a subwavelength patterned metal grating. Opt. Express 2007, 15, 15457–15463. [Google Scholar] [CrossRef]
- Chen, Q.; Das, D.; Chitnis, D.; Walls, K.; Drysdale, T.; Collins, S.; Cumming, D. A CMOS image sensor integrated with plasmonic colour filters. Plasmonics 2012, 7, 695–699. [Google Scholar] [CrossRef]
- Chen, Q.; Cumming, D.R. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Express 2010, 18, 14056–14062. [Google Scholar] [CrossRef] [PubMed]
- Yokogawa, S.; Burgos, S.P.; Atwater, H.A. Plasmonic Color Filters for CMOS Image Sensor Applications. Nano Lett. 2012, 12, 4349–4354. [Google Scholar] [CrossRef] [PubMed]
- Rajasekharan Unnithan, R.; Sun, M.; He, X.; Balaur, E.; Minovich, A.; Neshev, D.N.; Skafidas, E.; Roberts, A. Plasmonic colour filters based on coaxial holes in aluminium. Materials 2017, 10, 383. [Google Scholar] [CrossRef]
- Li, X.; Soler, M.; Özdemir, C.I.; Belushkin, A.; Yesilköy, F.; Altug, H. Plasmonic nanohole array biosensor for label-free and real-time analysis of live cell secretion. Lab Chip 2017, 17, 2208–2217. [Google Scholar] [CrossRef] [PubMed]
- Brolo, A.G.; Gordon, R.; Leathem, B.; Kavanagh, K.L. Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films. Langmuir 2004, 20, 4813–4815. [Google Scholar] [CrossRef]
- Menezes, J.W.; Ferreira, J.; Santos, M.J.; Cescato, L.; Brolo, A.G. Large-Area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-Enhanced photovoltaics. Adv. Funct. Mater. 2010, 20, 3918–3924. [Google Scholar] [CrossRef]
- Sagle, L.B.; Ruvuna, L.K.; Ruemmele, J.A.; Van Duyne, R.P. Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine 2011, 6, 1447–1462. [Google Scholar] [CrossRef] [Green Version]
- Cetin, A.E.; Topkaya, S.N. Photonic crystal and plasmonic nanohole based label-free biodetection. Biosens. Bioelectron. 2019, 132, 196–202. [Google Scholar] [CrossRef]
- Cetin, A.E.; Coskun, A.F.; Galarreta, B.C.; Huang, M.; Herman, D.; Ozcan, A.; Altug, H. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci. Appl. 2014, 3, e122. [Google Scholar] [CrossRef]
- Soler, M.; Belushkin, A.; Cavallini, A.; Kebbi-Beghdadi, C.; Greub, G.; Altug, H. Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Biosens. Bioelectron. 2017, 94, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Hall, W.P.; Ngatia, S.N.; Van Duyne, R.P. LSPR Biosensor Signal Enhancement Using Nanoparticle—Antibody Conjugates. J. Phys. Chem. C 2011, 115, 1410–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Cruz, J.; Nair, S.; Manjarrez-Hernandez, A.; Gavilanes-Parra, S.; Ascanio, G.; Escobedo, C. Cost-effective flow-through nanohole array-based biosensing platform for the label-free detection of uropathogenic E. coli in real time. Biosens. Bioelectron. 2018, 106, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, X.; Li, X.; Pu, M.; Luo, X. Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron. Adv. 2018, 1, 180013. [Google Scholar] [CrossRef] [Green Version]
- Horie, Y.; Han, S.; Lee, J.Y.; Kim, J.; Kim, Y.; Arbabi, A.; Shin, C.; Shi, L.; Arbabi, E.; Kamali, S.M.; et al. Visible Wavelength Color Filters Using Dielectric Subwavelength Gratings for Backside-Illuminated CMOS Image Sensor Technologies. Nano Lett. 2017, 17, 3159–3164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rüther, R.; Livingstone, J.; Dytlewski, N. Large-grain polycrystalline silicon thin films obtained by low-temperature stepwise annealing of hydrogenated amorphous silicon. Thin Solid Films 1997, 310, 67–74. [Google Scholar] [CrossRef]
- Buitrago, R.H.; Risso, G.A.; Cutrera, M.; Battioni, M.; De Bernardez, L.; Schmidt, J.A.; Arce, R.D.; Koropecki, R.R. Polycrystalline silicon thin film solar cells prepared by PECVD-SPC. Int. J. Hydrog. Energy 2008, 33, 3522–3525. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Cui, Y.; Fan, S. Light management for photovoltaics using high-index nanostructures. Nat. Mater. 2014, 13, 451–460. [Google Scholar] [CrossRef]
- Li, Z.; Clark, A.W.; Cooper, J.M. Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. ACS Nano 2016, 10, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Gao, J.; Luk, T.S.; Yang, X. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci. Rep. 2015, 5, 11045. [Google Scholar] [CrossRef]
- Davies, S.T.; Khamsehpour, B. Focused ion beam machining and deposition for nanofabrication. Vacuum 1996, 47, 455–462. [Google Scholar] [CrossRef]
- He, X.; Liu, Y.; Beckett, P.; Uddin, H.; Nirmalathas, A.; Unnithan, R.R. Transmission enhancement in plasmonic nanohole array for colour imaging applications. In Proceedings of the AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) 2019, Melbourne, Australia, 9–12 December 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11200, p. 112003M. [Google Scholar]
- Kumar, K.; Duan, H.; Hegde, R.S.; Koh, S.C.; Wei, J.N.; Yang, J.K. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 2012, 7, 557. [Google Scholar] [PubMed]
- Luk’yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Alexson, D.; Glembocki, O.; Prokes, S. The effect of size and size distribution on the oxidation kinetics and plasmonics of nanoscale Ag particles. Nanotechnology 2010, 21, 215706. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.J.; Zhang, L.; Zhu, D.; Goh, X.M.; Wang, Y.M.; Kumar, K.; Qiu, C.W.; Yang, J.K. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 2014, 14, 4023–4029. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, X.; Zhou, K.; Yang, X.; Yu, Y. Wide-Gamut and Polarization-Independent Structural Color at Optical Sub-diffraction-Limit Spatial Resolution Based on Uncoupled LSPPs. Nanoscale Res. Lett. 2019, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Yu, X.; Yang, X.; Xiang, Q.; Duan, H.; Yu, Y. Polarization independent subtractive color printing based on ultrathin hexagonal nanodisk-nanohole hybrid structure arrays. Opt. Express 2017, 25, 23137–23145. [Google Scholar] [CrossRef]
- Woolf, D.; Loncar, M.; Capasso, F. The forces from coupled surface plasmon polaritons in planar waveguides. Opt. Express 2009, 17, 19996–20011. [Google Scholar] [CrossRef]
- Dai, P.; Wang, Y.; Zhu, X.; Shi, H.; Chen, Y.; Zhang, S.; Yang, W.; Chen, Z.; Xiao, S.; Duan, H. Transmissive structural color filters using vertically coupled aluminum nanohole/nanodisk array with a triangular-lattice. Nanotechnology 2018, 29, 395202. [Google Scholar] [CrossRef]
- Clausen, J.S.; Højlund-Nielsen, E.; Christiansen, A.B.; Yazdi, S.; Grajower, M.; Taha, H.; Levy, U.; Kristensen, A.; Mortensen, N.A. Plasmonic Metasurfaces for Coloration of Plastic Consumer Products. Nano Lett. 2014, 14, 4499–4504. [Google Scholar] [CrossRef]
- Carrillo, S.G.; Trimby, L.; Au, Y.; Nagareddy, V.K.; Rodriguez-Hernandez, G.; Hosseini, P.; Ríos, C.; Bhaskaran, H.; Wright, C.D. A Nonvolatile Phase-Change Metamaterial Color Display. Adv. Opt. Mater. 2019, 7, 1801782. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Yang, F.; Gao, B.; Yang, Q.; Wu, J.; He, W. Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime. Opt. Express 2019, 27, 25902–25911. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Yang, R.; Fan, Y.; Fu, Q.; Wu, H.; Zhang, P.; Shen, N.H.; Zhang, F. Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials. Nanoscale 2018, 10, 12054–12061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, T.; Bai, X.; Gao, D.; Thong, J.T.; Li, B.; Qiu, C.W. Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 2014, 112, 054302. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Wong, Z.J.; Mrejen, M.; Wang, Y.; Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 2015, 349, 1310–1314. [Google Scholar] [CrossRef]
- Menzel, C.; Helgert, C.; Rockstuhl, C.; Kley, E.B.; Tünnermann, A.; Pertsch, T.; Lederer, F. Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials. Phys. Rev. Lett. 2010, 104, 253902. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Ma, H.; Wang, J.; Pang, Y.; Feng, D.; Xu, Z.; Qu, S. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Yuan, Y.; Ran, L.; Jiang, T.; Kong, J.A.; Chan, C.T.; Zhou, L. Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials. Phys. Rev. Lett. 2007, 99, 063908. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 2007, 315, 1686. [Google Scholar] [CrossRef] [Green Version]
- Grbic, A.; Eleftheriades, G.V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 2004, 92, 117403. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Wang, J.; Liu, X.; Padilla, W.J.; Zhou, L.; Qiu, M. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 2010, 96, 251104. [Google Scholar] [CrossRef]
- Yang, C.; Shen, W.; Zhou, J.; Fang, X.; Zhao, D.; Zhang, X.; Ji, C.; Fang, B.; Zhang, Y.; Liu, X. Angle robust reflection/transmission plasmonic filters using ultrathin metal patch array. Adv. Opt. Mater. 2016, 4, 1981–1986. [Google Scholar] [CrossRef]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.; Manjavacas, A.; Liu, L.; Chang, W.S.; Foerster, B.; King, N.S.; Knight, M.W.; Nordlander, P.; Halas, N.J.; Link, S. Vivid, full-color aluminum plasmonic pixels. Proc. Natl. Acad. Sci. USA 2014, 111, 14348–14353. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Sun, L.; Hu, X.; Shi, B.; Zeng, B.; Wang, L.; Zhao, J.; Yang, S.; Tai, R.; Fecht, H.J. Angle-insensitive plasmonic color filters with randomly distributed silver nanodisks. Opt. Lett. 2015, 40, 4979–4982. [Google Scholar] [CrossRef]
- Shrestha, V.R.; Lee, S.S.; Kim, E.S.; Choi, D.Y. Aluminum Plasmonics Based Highly Transmissive Polarization-Independent Subtractive Color Filters Exploiting a Nanopatch Array. Nano Lett. 2014, 14, 6672–6678. [Google Scholar] [CrossRef]
- Olson, J.; Manjavacas, A.; Basu, T.; Huang, D.; Schlather, A.E.; Zheng, B.; Halas, N.J.; Nordlander, P.; Link, S. High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano 2016, 10, 1108–1117. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Jia, H.; Hu, X.; Sun, L.; Wang, L.; Yang, S.; Tai, R.; Fecht, H.J.; Wang, L.; Zhang, D. Plasmonic reflection color filters with metallic random nanostructures. Nanotechnology 2017, 28, 085203. [Google Scholar] [CrossRef]
- Roberts, A.S.; Pors, A.; Albrektsen, O.; Bozhevolnyi, S.I. Subwavelength Plasmonic Color Printing Protected for Ambient Use. Nano Lett. 2014, 14, 783–787. [Google Scholar] [CrossRef]
- Miyata, M.; Hatada, H.; Takahara, J. Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas. Nano Lett. 2016, 16, 3166–3172. [Google Scholar] [CrossRef]
- Pors, A.; Bozhevolnyi, S.I. Plasmonic metasurfaces for efficient phase control in reflection. Opt. Express 2013, 21, 27438–27451. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Chettiar, U.K.; Yuan, H.K.; de Silva, V.C.; Kildishev, A.V.; Drachev, V.P.; Shalaev, V.M. Metamagnetics with rainbow colors. Opt. Express 2007, 15, 3333–3341. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.G.; Gramotnev, D.K.; Pors, A.; Albrektsen, O.; Bozhevolnyi, S.I. Continuous layer gap plasmon resonators. Opt. Express 2011, 19, 19310–19322. [Google Scholar] [CrossRef]
- Nielsen, M.G.; Pors, A.; Albrektsen, O.; Bozhevolnyi, S.I. Efficient absorption of visible radiation by gap plasmon resonators. Opt. Express 2012, 20, 13311–13319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pors, A.; Nielsen, M.G.; Eriksen, R.L.; Bozhevolnyi, S.I. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 2013, 13, 829–834. [Google Scholar] [CrossRef]
- Wang, S.; Wu, P.C.; Su, V.C.; Lai, Y.C.; Chu, C.H.; Chen, J.W.; Lu, S.H.; Chen, J.; Xu, B.; Kuan, C.H. Broadband achromatic optical metasurface devices. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Zhu, H.; Yi, F.; Cubukcu, E. Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances. Nat. Photonics 2016, 10, 709–714. [Google Scholar] [CrossRef]
- Huang, Y.W.; Lee, H.W.H.; Sokhoyan, R.; Pala, R.A.; Thyagarajan, K.; Han, S.; Tsai, D.P.; Atwater, H.A. Gate-Tunable Conducting Oxide Metasurfaces. Nano Lett. 2016, 16, 5319–5325. [Google Scholar] [CrossRef] [Green Version]
- Walther, B.; Helgert, C.; Rockstuhl, C.; Setzpfandt, F.; Eilenberger, F.; Kley, E.; Lederer, F.; Tünnermann, A.; Pertsch, T. Spatial and spectral light shaping with metamaterials. Adv. Mater. 2012, 24, 6300–6304. [Google Scholar] [CrossRef]
- Wen, D.; Yue, F.; Li, G.; Zheng, G.; Chan, K.; Chen, S.; Chen, M.; Li, K.F.; Wong, P.W.H.; Cheah, K.W. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef]
- Li, Z.; Palacios, E.; Butun, S.; Aydin, K. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett. 2015, 15, 1615–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadchy, V.S.; Albooyeh, M.; Tcvetkova, S.N.; Díaz-Rubio, A.; Ra’di, Y.; Tretyakov, S.A. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B 2016, 94, 075142. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, Y.; Chen, X.; Hao, J.; Yan, M.; Qiu, M. Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt. Express 2011, 19, 14726–14734. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348. [Google Scholar] [CrossRef]
- Wu, P.C.; Tsai, W.Y.; Chen, W.T.; Huang, Y.W.; Chen, T.Y.; Chen, J.W.; Liao, C.Y.; Chu, C.H.; Sun, G.; Tsai, D.P. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett. 2017, 17, 445–452. [Google Scholar] [CrossRef]
- Ding, F.; Wang, Z.; He, S.; Shalaev, V.M.; Kildishev, A.V. Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach. ACS Nano 2015, 9, 4111–4119. [Google Scholar] [CrossRef]
- Pors, A.; Nielsen, M.G.; Bernardin, T.; Weeber, J.C.; Bozhevolnyi, S.I. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci. Appl. 2014, 3, e197. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, X.; Yan, C.; Zhao, H.; Zhang, J.; Santschi, C.; Martin, O.J.F. Full Color Generation Using Silver Tandem Nanodisks. ACS Nano 2017, 11, 4419–4427. [Google Scholar] [CrossRef]
- Hulst, H.C.; van de Hulst, H.C. Light Scattering by Small Particles; Dover Publications: Mineola, NY, USA, 1981. [Google Scholar]
- Kajfez, D.; Guillon, P. Dielectric Resonators; Artech House, Inc.: Norwood, MA, USA, 1986; 547p. [Google Scholar]
- Schuller, J.A.; Brongersma, M.L. General properties of dielectric optical antennas. Opt. Express 2009, 17, 24084–24095. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Novikov, S.M.; Zywietz, U.; Eriksen, R.L.; Reinhardt, C.; Bozhevolnyi, S.I.; Chichkov, B.N. Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region. Nano Lett. 2012, 12, 3749–3755. [Google Scholar] [CrossRef]
- Ginn, J.C.; Brener, I.; Peters, D.W.; Wendt, J.R.; Stevens, J.O.; Hines, P.F.; Basilio, L.I.; Warne, L.K.; Ihlefeld, J.F.; Clem, P.G. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 2012, 108, 097402. [Google Scholar] [CrossRef] [PubMed]
- Greegor, R.; Parazzoli, C.; Li, K.; Tanielian, M. Origin of dissipative losses in negative index of refraction materials. Appl. Phys. Lett. 2003, 82, 2356–2358. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhou, Z.; Zhang, C.; Gao, Y.; Duan, Z.; Xiao, S.; Song, Q. All-Dielectric Full-Color Printing with TiO2 Metasurfaces. ACS Nano 2017, 11, 4445–4452. [Google Scholar] [CrossRef] [PubMed]
- Vashistha, V.; Vaidya, G.; Hegde, R.S.; Serebryannikov, A.E.; Bonod, N.; Krawczyk, M. All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut. ACS Photonics 2017, 4, 1076–1082. [Google Scholar] [CrossRef] [Green Version]
- Park, C.S.; Shrestha, V.R.; Yue, W.; Gao, S.; Lee, S.S.; Kim, E.S.; Choi, D.Y. Structural Color Filters Enabled by a Dielectric Metasurface Incorporating Hydrogenated Amorphous Silicon Nanodisks. Sci. Rep. 2017, 7, 2556. [Google Scholar] [CrossRef] [Green Version]
- Nagasaki, Y.; Suzuki, M.; Takahara, J. All-Dielectric Dual-Color Pixel with Subwavelength Resolution. Nano Lett. 2017, 17, 7500–7506. [Google Scholar] [CrossRef]
- Flauraud, V.; Reyes, M.; Paniagua-Domínguez, R.; Kuznetsov, A.I.; Brugger, J. Silicon Nanostructures for Bright Field Full Color Prints. ACS Photonics 2017, 4, 1913–1919. [Google Scholar] [CrossRef]
- Yang, B.; Liu, W.; Li, Z.; Cheng, H.; Choi, D.Y.; Chen, S.; Tian, J. Ultrahighly Saturated Structural Colors Enhanced by Multipolar-Modulated Metasurfaces. Nano Lett. 2019, 19, 4221–4228. [Google Scholar] [CrossRef]
- Yang, J.H.; Babicheva, V.E.; Yu, M.W.; Lu, T.C.; Lin, T.R.; Chen, K.P. Structural Colors Enabled by Lattice Resonance on Silicon Nitride Metasurfaces. ACS Nano 2020, 14, 5678–5685. [Google Scholar] [CrossRef]
- Nagasaki, Y.; Hotta, I.; Suzuki, M.; Takahara, J. Metal-Masked Mie-Resonant Full-Color Printing for Achieving Free-Space Resolution Limit. ACS Photonics 2018, 5, 3849–3855. [Google Scholar] [CrossRef]
- Yue, W.; Gao, S.; Lee, S.S.; Kim, E.S.; Choi, D.Y. Subtractive Color Filters Based on a Silicon-Aluminum Hybrid-Nanodisk Metasurface Enabling Enhanced Color Purity. Sci. Rep. 2016, 6, 29756. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, S.; Li, Y.; Zhang, C.; Yue, W. Dielectric metasurfaces based on a rectangular lattice of a-Si:H nanodisks for color pixels with high saturation and stability. Opt. Express 2019, 27, 35027–35040. [Google Scholar] [CrossRef] [PubMed]
- Proust, J.; Bedu, F.; Gallas, B.; Ozerov, I.; Bonod, N. All-Dielectric Colored Metasurfaces with Silicon Mie Resonators. ACS Nano 2016, 10, 7761–7767. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Luo, F.; Kao, T.S.; Li, X.; Ho, G.W.; Teng, J.; Luo, X.; Hong, M. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci. Appl. 2014, 3, e185. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, Q.; Ma, Y.; Lu, M.; Zhang, B.; Lapsley, M.; Khoo, I.C.; Jun Huang, T. Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array. Appl. Phys. Lett. 2012, 100, 053119. [Google Scholar] [CrossRef] [Green Version]
- Yen, H.C.; Kuo, T.R.; Wang, C.T.; Lin, J.D.; Chen, C.C.; Hsiao, Y.C. Optical properties of electrically active gold nanoisland films enabled with interfaced liquid crystals. Nanomaterials 2020, 10, 290. [Google Scholar] [CrossRef] [Green Version]
- Geandier, G.; Renault, P.O.; Le Bourhis, E.; Goudeau, P.; Faurie, D.; Le Bourlot, C.; Djémia, P.; Castelnau, O.; Cherif, S. Elastic-strain distribution in metallic film-polymer substrate composites. Appl. Phys. Lett. 2010, 96, 041905. [Google Scholar] [CrossRef]
- Chah, S.; Noolandi, J.; Zare, R.N. Undulatory delamination of thin polymer films on gold surfaces. J. Phys. Chem. B 2005, 109, 19416–19421. [Google Scholar] [CrossRef]
- Böhme, A.; Sterl, F.; Kath, E.; Ubl, M.; Manninen, V.; Giessen, H. Electrochemistry on Inverse Copper Nanoantennas: Active Plasmonic Devices with Extraordinarily Large Resonance Shift. ACS Photonics 2019, 6, 1863–1868. [Google Scholar] [CrossRef]
- Novo, C.; Funston, A.M.; Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 2008, 3, 598–602. [Google Scholar]
- Xu, L.; Mou, F.; Gong, H.; Luo, M.; Guan, J. Light-driven micro/nanomotors: From fundamentals to applications. Chem. Soc. Rev. 2017, 46, 6905–6926. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.B.; Yang, Y.W.; Jensen, L.; Fang, L.; Juluri, B.K.; Flood, A.H.; Weiss, P.S.; Stoddart, J.F.; Huang, T.J. Active molecular plasmonics: Controlling plasmon resonances with molecular switches. Nano Lett. 2009, 9, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.T. Birefringence dispersions of liquid crystals. Phys. Rev. A 1986, 33, 1270. [Google Scholar] [CrossRef] [PubMed]
- Si, G.; Zhao, Y.; Leong, E.S.P.; Liu, Y.J. Liquid-crystal-enabled active plasmonics: A review. Materials 2014, 7, 1296–1317. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S. Liquid crystals—The ‘fourth’ phase of matter. Resonance 2003, 8, 52–70. [Google Scholar] [CrossRef]
- Yang, D.K.; Wu, S.T. Fundamentals of Liquid Crystal Devices; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Lee, Y.; Park, M.K.; Kim, S.; Shin, J.H.; Moon, C.; Hwang, J.Y.; Choi, J.C.; Park, H.; Kim, H.R.; Jang, J.E. Electrical Broad Tuning of Plasmonic Color Filter Employing an Asymmetric-Lattice Nanohole Array of Metasurface Controlled by Polarization Rotator. ACS Photonics 2017, 4, 1954–1966. [Google Scholar] [CrossRef]
- Xie, Z.W.; Yang, J.H.; Vashistha, V.; Lee, W.; Chen, K.P. Liquid-crystal tunable color filters based on aluminum metasurfaces. Opt. Express 2017, 25, 30764–30770. [Google Scholar] [CrossRef]
Angle Invariance () | FWHM (nm) | Mode (T/A/R) | Efficiency (%) | Ref |
---|---|---|---|---|
12 | 100 | T | 60 | [38] |
70 | 74 | T and R | NG | [12] |
60 | 8 | T and A | & | [39] |
60 | NG | R | NG | [44] |
74 | R | NG | [43] | |
60 | 70 | A | NG | [45] |
65 | 100 | R | 80 | [46] |
70 | NG | T | 70 | [46] |
60 | 36 | T | 54 | [47] |
NA | A | 99.58 | [48] | |
50 | NG | R | NG | [49] |
60 | NG | R | 90 | [50] |
30 | NA | A | 95 | [42] |
Angle Invariance () | FWHM (nm) | Efficiency (%) | Ref |
---|---|---|---|
0 | 30 | 90 | [91] |
0 | 60 | 73 | [93] |
0 | 20 | 80 | [94] |
0 | 12 | 99 | [96] |
0 | NG | 90 | [107] |
35 | NG | 95 | [98] |
0 | 100 | 70 | [99] |
0 | 17 | 85 | [90] |
NG | NG | [100] |
Nanohole | ||||
Angle Invariance (°) | FWHM (nm) | Efficiency (%) | Spatial Resolution (dpi) | Ref |
NG | 60–80 | NG | [159] | |
0 | NG | 14 | NG | [163] |
70 | 55 | 98 | NG | [164] |
60 | 145 | 60 | NG | [166] |
Nanohole Hybrid | ||||
NG | NG | NG | 100,000 | [167] |
NG | NG | 141,000 | [171] | |
0 | NG | 60 | 77000 | [172] |
0 | NG | NG | 127,000 | [174] |
60 | NG | NG | NG | [175] |
Meta surface | ||||
60 | NG | 40 | 100,000 | [187] |
NG | 75 | 100,000 | [191] | |
60 | NG | NG | 100,000 | [190] |
Gap Surface Plasmon | ||||
60 | 110 | NG | 100,000 | [194] |
60 | NG | NG | 100,000 | [195] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaukat, A.; Noble, F.; Arif, K.M. Nanostructured Color Filters: A Review of Recent Developments. Nanomaterials 2020, 10, 1554. https://doi.org/10.3390/nano10081554
Shaukat A, Noble F, Arif KM. Nanostructured Color Filters: A Review of Recent Developments. Nanomaterials. 2020; 10(8):1554. https://doi.org/10.3390/nano10081554
Chicago/Turabian StyleShaukat, Ayesha, Frazer Noble, and Khalid Mahmood Arif. 2020. "Nanostructured Color Filters: A Review of Recent Developments" Nanomaterials 10, no. 8: 1554. https://doi.org/10.3390/nano10081554
APA StyleShaukat, A., Noble, F., & Arif, K. M. (2020). Nanostructured Color Filters: A Review of Recent Developments. Nanomaterials, 10(8), 1554. https://doi.org/10.3390/nano10081554