Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef] [PubMed]
- Baikousi, M.; Chalmpes, N.; Spyrou, K.; Bourlinos, A.B.; Avgeropoulos, A.; Gournis, D.; Karakassides, M.A. Direct production of carbon nanosheets by self-ignition of pyrophoric lithium dialkylamides in air. Mater. Lett. 2019, 254, 58–61. [Google Scholar] [CrossRef]
- Chalmpes, N.; Spyrou, K.; Bourlinos, A.B.; Moschovas, D.; Avgeropoulos, A.; Karakassides, M.A.; Gournis, D. Synthesis of highly crystalline graphite from spontaneous ignition of in situ derived acetylene and chlorine at ambient conditions. Molecules 2020, 25, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalmpes, N.; Asimakopoulos, G.; Spyrou, K.; Vasilopoulos, K.C.; Bourlinos, A.B.; Moschovas, D.; Avgeropoulos, A.; Karakassides, M.A.; Gournis, D. Functional carbon materials derived through hypergolic reactions at ambient conditions. Nanomaterials 2020, 10, 566. [Google Scholar] [CrossRef] [Green Version]
- Chalmpes, N.; Spyrou, K.; Vasilopoulos, K.C.; Bourlinos, A.B.; Moschovas, D.; Avgeropoulos, A.; Gioti, C.; Karakassides, M.A.; Gournis, D. Hypergolics in carbon nanomaterials synthesis: New paradigms and perspectives. Molecules 2020, 25, 2207. [Google Scholar] [CrossRef]
- Hou, H.; Schaper, A.K.; Weller, F.; Greiner, A. Carbon nanotubes and spheres produced by modified ferrocene pyrolysis. Chem. Mater. 2002, 14, 3990–3994. [Google Scholar] [CrossRef]
- Hu, Z.D.; Hu, Y.F.; Chen, Q.; Duan, X.F.; Peng, L.M. Synthesis and characterizations of amorphous carbon nanotubes by pyrolysis of ferrocene confined within AAM templates. J. Phys. Chem. B 2006, 110, 8263–8267. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, J.; Garzón, C.; Bergmann, C.; Geshev, J.; Quijada, R. Development of multifunctional polymer nanocomposites with carbon-based hybrid nanostructures synthesized from ferrocene. Eur. Polym. J. 2016, 75, 200–209. [Google Scholar] [CrossRef]
- Su, W.; He, M.; Xing, J.; Zhong, Y.; Li, Z. Facile synthesis of porous bifunctional Fe3O4@Y2O3:Ln nanocomposites using carbonized ferrocene as templates. RSC Adv. 2013, 3, 25970–25975. [Google Scholar] [CrossRef]
- Nesmeyanov, A.N.; Anisimov, K.N.; Kolobova, N.E.; Zlotina, I.B. Action of bromine and chlorine on cyclopentadienylmanganesetricarbonyl. Bull. Acad. Sci. USSR Div. Chem. Sci. 1968, 17, 858–860. [Google Scholar] [CrossRef]
- Poli, R.; Harvey, J.N. Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges. Chem. Soc. Rev. 2003, 32, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Majewska, J.; Michalkiewicz, B. Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A 2013, 111, 1013–1016. [Google Scholar] [CrossRef] [Green Version]
- Roh, J.S. Structural study of the activated carbon fiber using laser Raman spectroscopy. Carbon Lett. 2008, 9, 127–130. [Google Scholar] [CrossRef]
- Mansour, H.; Letifi, H.; Bargougui, R.; De Almeida-Didry, S.; Negulescu, B.; Autret-Lambert, C.; Gadri, A.; Ammar, S. Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: Polyol and precipitation. Appl. Phys. A 2017, 123, 787. [Google Scholar] [CrossRef]
- Jankovský, O.; Šimek, P.; Klimová, K.; Sedmidubský, D.; Matějková, S.; Pumera, M.; Sofer, Z. Towards graphene bromide: Bromination of graphite oxide. Nanoscale 2014, 6, 6065–6074. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Liu, H.T.; Wu, B.; Di, C.A.; Guo, Y.L.; Wu, T.; Yu, G.; Liu, Y.Q.; Zhu, D.B. Production of graphite chloride and bromide using microwave sparks. Sci. Rep. 2012, 2, 662. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Ng, K.M.; Weng, L.T.; Chan, C.M. Characterization of hydrogenated graphite powder by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. RSC Adv. 2016, 6, 80649–80654. [Google Scholar] [CrossRef]
- Zou, G.; Yu, D.; Lu, J.; Wang, D.; Jiang, C.; Qian, Y. A self-generated template route to hollow carbon nanospheres in a short time. Solid State Commun. 2004, 131, 749–752. [Google Scholar] [CrossRef]
- Boi, F.S.; Guo, J.; Medranda, D.; Borowiec, J.; Liu, D.; Wang, S.; Zhang, X.; He, Y.; Xiang, G. Observation of curling effects in tubular and planar graphene-like structures by pyrolysis of ferrocene/dichlorobenzene mixtures. Mater. Today Chem. 2018, 10, 120–127. [Google Scholar] [CrossRef]
- Bourlinos, A.B.; Zbořil, R.; Petr, J.; Bakandritsos, A.; Krysmann, M.; Giannelis, E.P. Luminescent surface quaternized carbon dots. Chem. Mater. 2012, 24, 6–8. [Google Scholar] [CrossRef]
- Essner, J.B.; Kist, J.A.; Polo-Parada, L.; Baker, G.A. Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem. Mater. 2018, 30, 1878–1887. [Google Scholar] [CrossRef]
- Li, L.; Dong, T. Photoluminescence tuning in carbon dots: Surface passivation or/and functionalization, heteroatom doping. J. Mater. Chem. C 2018, 6, 7944–7970. [Google Scholar] [CrossRef]
- Potsi, G.; Bourlinos, A.B.; Mouselimis, V.; Poláková, K.; Chalmpes, N.; Gournis, D.; Kalytchuk, S.; Tomanec, O.; Błoński, P.; Medveď, M.; et al. Intrinsic photoluminescence of amine-functionalized graphene derivatives for bioimaging applications. Appl. Mater. Today 2019, 17, 112–122. [Google Scholar] [CrossRef]
- Das, R.; Bandyopadhyay, R.; Pramanik, P. Carbon quantum dots from natural resource: A review. Mater. Today Chem. 2018, 8, 96–109. [Google Scholar] [CrossRef]
- Chu, K.W.; Lee, S.L.; Chang, C.J.; Liu, L. Recent progress of carbon dot precursors and photocatalysis applications. Polymers 2019, 11, 689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Feng, Y.; Dong, P.; Huang, J. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application. Front. Chem. 2019, 7. [Google Scholar] [CrossRef]
- 2-(2-Aminoethoxy)ethanol. Available online: https://www.sigmaaldrich.com/catalog/product/aldrich/a54059?lang=en®ion=GR (accessed on 23 April 2020).
Compound | Fe(C5H5)2(s) | Br2(ℓ) | C(s) | FeBr3(s) | HBr(g) |
---|---|---|---|---|---|
(Graphite) | |||||
H° (kJ·mol−1) | 158 | 0 | 0 | −269 | −36 |
S° (kJ·K−1·mol−1) | 0.216 | 0.152 | 0.00574 | 0.184 | 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalmpes, N.; Tantis, I.; Bakandritsos, A.; Bourlinos, A.B.; Karakassides, M.A.; Gournis, D. Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions. Nanomaterials 2020, 10, 1564. https://doi.org/10.3390/nano10081564
Chalmpes N, Tantis I, Bakandritsos A, Bourlinos AB, Karakassides MA, Gournis D. Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions. Nanomaterials. 2020; 10(8):1564. https://doi.org/10.3390/nano10081564
Chicago/Turabian StyleChalmpes, Nikolaos, Iosif Tantis, Aristides Bakandritsos, Athanasios B. Bourlinos, Michael A. Karakassides, and Dimitrios Gournis. 2020. "Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions" Nanomaterials 10, no. 8: 1564. https://doi.org/10.3390/nano10081564
APA StyleChalmpes, N., Tantis, I., Bakandritsos, A., Bourlinos, A. B., Karakassides, M. A., & Gournis, D. (2020). Rapid Carbon Formation from Spontaneous Reaction of Ferrocene and Liquid Bromine at Ambient Conditions. Nanomaterials, 10(8), 1564. https://doi.org/10.3390/nano10081564