Behavior of Muscle-Derived Stem Cells on Silica Nanostructured Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SN
2.3. Rat Muscle-Derived Stem Cell Isolation
2.4. Culture of rMDSCs on SN
2.5. Immunocytochemistry Analysis
2.6. Gene Expression
2.7. Statistical Analysis
3. Results and Discussion
3.1. Preparation of SN
3.2. Adhesion and Proliferation of rMDSCs on SN
3.3. Adhesion and Stress-Related Protein/Gene Expression in rMDSCs Grown on SN
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Van Daele, M.; Griffiths, M.B.E.; Raza, A.; Minjauw, M.M.; Solano, E.; Feng, J.Y.; Ramachandran, R.K.; Clemmen, S.; Baets, R.; Barry, S.T.; et al. Plasma-enhanced atomic layer deposition of nanostructured gold near room temperature. ACS Appl. Mater. Inter. 2019, 9, 37229–37238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, S.; Kang, P.M. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials 2020, 10, 656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, Q.; Yu, Y.; Chen, W.; Shen, X.; Mu, C.; Yuan, Z.; Tao, B.; Hu, Y.; Yang, W.; Cai, K. Deferoxamine loaded titania nanotubes substrates regulate osteogenic and angiogenic differentiation of MSCs via activation of HIF-1α signaling. Mat. Sci. Eng. C-Mater. 2018, 91, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Rathore, B.; Sunwoo, K.; Jangili, P.; Kim, J.; Kim, J.; Kim, J.H.; Huang, M.; Xiong, J.; Sharma, A.; Yang, Z.; et al. Nanomaterial designing strategies related to cell lysosome and their biomedical applications: A review. Biomaterials 2019, 211, 25–47. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wang, L.; Lin, Y.; Liang, H.; Zhou, S.; Zheng, F.; Feng, X.; Rui, Y.; Shao, L. Nanoparticles for the treatment of oral biofilms: Current state, mechanisms, influencing factors, and prospects. Adv. Healthc. Mater. 2019, 8, 1901301. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kwon, H.; Shin, H.; Nam, G.; Kim, J.; Choi, S. Quasi-stem cells derived from human somatic cells by chemically modified carbon nanotubes. ACS Appl. Mater. Inter. 2018, 10, 8417–8425. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Khang, G.; Lee, H.B. Gradient polymer surfaces for biomedical applications. Prog. Polym. Sci. 2008, 33, 138–164. [Google Scholar] [CrossRef]
- Blättler, T.; Huwiler, C.; Ochsner, M.; Städler, B.; Solak, H.; Vörös, J.; Grandin, H.M. Nanopatterns with biological functions. J. Nanosci. Nanotechnol. 2006, 6, 2237–2264. [Google Scholar] [CrossRef]
- Chen, L.; Sun, A.; Wang, B.; Xu, G. Methyl-modified silica nanobowl for 2D self-organized nanostructure with hydrophobic performance. Nanotechnology 2018, 29, 295605. [Google Scholar] [CrossRef]
- Lo, C.K.; Wang, C.Y.; Oosterhout, S.D.; Zheng, Z.; Yi, X.; Fuentes-Hernandez, C.; So, F.; Coropceanu, V.; Brédas, J.; Toney, M.F.; et al. Langmuir-Blodgett thin films of diketopyrrolopyrrole-based amphiphiles. ACS Appl Mater. Inter. 2018, 10, 11995–12004. [Google Scholar] [CrossRef]
- Tummino, M.L.; Testa, M.L.; Malandrino, M.; Gamberini, R.; Prevot, A.B.; Magnacca, G.; Laurenti, E. Green waste-derived substances immobilized on SBA-15 silica: Surface Properties, adsorbing and photosensitizing activities towards organic and inorganic substrates. Nanomaterials 2019, 9, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, Y.; Wang, T.; Li, G.; Lou, R.; Cheng, G.; Bai, J. Nonlinear optical response of graphene oxide Langmuir-Blodgett film as saturable absorbers. Nanomaterials 2019, 9, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vikrant, K.; Bhardwaj, N.; Bhardwaj, S.K.; Kim, K.; Deep, A. Nanomaterials as efficient platforms for sensing DNA. Biomaterials 2019, 214, 119215. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Choi, M.S.; Shim, J.H.; Rhie, J. Bone morphogenetic protein 2-conjugated silica particles enhanced early osteogenic differentiation of adipose stem cells on the polycaprolactone Scaffold. Tissue Eng. Regen. Med. 2019, 16, 395–403. [Google Scholar] [CrossRef]
- Rinoldi, C.; Kijeńska, E.; Chlanda, A.; Choinska, E.; Khenoussi, N.; Tamayol, A.; Khademhosseini, A.; Swieszkowski, W. Nanobead-on-string composites for tendon tissue engineering. J. Mater. Chem. B 2018, 6, 3116–3127. [Google Scholar] [CrossRef]
- Nam, G.; Kim, K.; Park, S.; Kim, H.; Ahn, D.; Kim, J.; Lee, J. Modulation of semiconducting behavior in carbon nanotube Langmuir-Blodgett film based devices by controlling the effective channel dimension. Appl. Surf. Sci. 2019, 481, 540–544. [Google Scholar] [CrossRef]
- Tan, B.Y.; Nguyen, L.T.H.; Kim, H.; Kim, J.; Ng, K.W. Cultivation of human dermal fibroblasts and epidermal keratinocytes on keratin-coated silica bead substrates. J. Biomed. Mater. Res. A 2017, 105, 2789–2798. [Google Scholar] [CrossRef]
- Kim, H.; Choi, W.H.; Song, Y.A.; Lee, H.J.; Min, B.; Kim, J. Nanostructured films as a novel substrate for chondrocytes growth. J. Nanosci. Nanotechnol. 2011, 11, 4265–4268. [Google Scholar] [CrossRef]
- Frankish, H. Researchers question ability of stem cells to generate multiple cell types. Lancet 2002, 359, 951. [Google Scholar] [CrossRef]
- Chun, S.Y.; Lim, J.O.; Lee, E.H.; Han, M.; Ha, Y.; Lee, J.N.; Kim, B.S.; Park, M.J.; Yeo, M.; Jung, B.; et al. Preparation and characterization of human adipose tissue-derived extracellular matrix, growth factors, and stem cells: A concise review. Tissue Eng. Regen. Med. 2019, 16, 385–393. [Google Scholar] [CrossRef]
- Kim, K.S.; Lee, J.H.; Ahn, H.H.; Lee, J.Y.; Khang, G.; Lee, B.; Lee, H.B.; Kim, M.S. The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds. Biomaterials 2008, 29, 4420–4428. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Kim, G.H.; Kang, M.L.; Kang, Y.M.; Kang, K.N.; Lee, J.H.; Min, B.H.; Kim, J.H.; Kim, M.S. Toxicity evaluation of rat muscle-derived stem cells by galantamine. Tissue Eng. Regen. Med. 2010, 7, 362–366. [Google Scholar]
- Critchley, D.R. Focal adhesions-the cytoskeletal connection. Curr. Opin. Cell Biol. 2000, 12, 133–139. [Google Scholar] [CrossRef]
- Crenshaw, H.C.; Allen, J.A.; Skeen, V.; Harris, A.; Salmon, E.D. Hydrostatic pressure has different effects on the assembly of tubulin, actin, myosin II, vinculin, talin, vimentin, and cytokeratin in mammalian tissue cells. Exp. Cell Res. 1996, 227, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Shai, S.; Harpf, A.E.; Babbitt, C.J.; Jordan, M.C.; Fishbein, M.C.; Chen, J.; Omura, M.; Leil, T.A.; Becker, K.D.; Jiang, M.; et al. Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ. Res. 2002, 90, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Beere, H.M.; Green, D.R. Stress management-heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol. 2001, 11, 6–10. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Yu, O.K.; Grabinski, M.C.; Schrand, M.A.; Murdock, C.R.; Wang, W.; Gu, B.; Schlager, J.J.; Hussain, M.S. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J. Nanopart. Res. 2009, 11, 15–24. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-S.; Lee, B.N.; Choi, S.; Kim, M.S.; Kim, J.-H. Behavior of Muscle-Derived Stem Cells on Silica Nanostructured Substrates. Nanomaterials 2020, 10, 1651. https://doi.org/10.3390/nano10091651
Kim H-S, Lee BN, Choi S, Kim MS, Kim J-H. Behavior of Muscle-Derived Stem Cells on Silica Nanostructured Substrates. Nanomaterials. 2020; 10(9):1651. https://doi.org/10.3390/nano10091651
Chicago/Turabian StyleKim, Hyo-Sop, Bit Na Lee, Sangdun Choi, Moon Suk Kim, and Jae-Ho Kim. 2020. "Behavior of Muscle-Derived Stem Cells on Silica Nanostructured Substrates" Nanomaterials 10, no. 9: 1651. https://doi.org/10.3390/nano10091651
APA StyleKim, H. -S., Lee, B. N., Choi, S., Kim, M. S., & Kim, J. -H. (2020). Behavior of Muscle-Derived Stem Cells on Silica Nanostructured Substrates. Nanomaterials, 10(9), 1651. https://doi.org/10.3390/nano10091651