Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends
Abstract
:1. Introduction
2. Nanomaterials Classification
2.1. Metal Oxide NPs
2.2. Metallic NPs
2.3. Carbon-Based Nanomaterials
3. Nanotoxicology
4. Nanotechnology in Agriculture
4.1. Nanofertilizers
4.2. Nanoherbicides
4.3. Nanopesticides
5. Plant Stress
5.1. Abiotic Stress
5.1.1. Metal Stress
5.1.2. Nanoparticle Stress
Metallic NPs
Metal Oxide NPs
Carbon Based Nanomaterials
6. Plant Elicitors
6.1. Nanoparticle Elicitors
6.1.1. Metallic NPs
6.1.2. Metal Oxide NPs
6.1.3. Carbon-Based Nanomaterials
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iavicoli, I.; Leso, V.; Beezhold, D.H.; Shvedova, A.A. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharm. 2017, 329, 96–111. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.K.; Shweta, S.; Singh, S.; Singh, S.; Pandey, R.; Singh, V.P.; Sharma, N.C.; Prasad, S.M.; Dubey, N.K.; Chauhan, D.K. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant. Physiol. Biochem. 2017, 110, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zou, Z.; Shen, Y.; Li, J.; Shi, S.; Han, S.; Zhan, X. Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene. Environ. Pollut. 2019, 247, 108–117. [Google Scholar] [CrossRef] [PubMed]
- López-Moreno, M.L.; De La Rosa, G.; Hernández-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 2010, 58, 3689–3693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Moreno, M.L.; Avilés, L.L.; Pérez, N.G.; Irizarry, B.Á.; Perales, O.; Cedeno-Mattei, Y.; Román, F. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci. Total Environ. 2016, 550, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastogi, A.; Zivcak, M.; Tripathi, D.K.; Yadav, S.; Kalaji, H.M. Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 2019, 57, 209–216. [Google Scholar] [CrossRef]
- Mishra, M.; Dashora, K.; Srivastava, A.; Fasake, V.D.; Nag, R.H. Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicol. Environ. Saf. 2019, 171, 677–682. [Google Scholar] [CrossRef]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.; Metreveli, G.; Schaumann, G.; Schulz, R.; Wagner, S. Nanoparticles in the environment: Where do we come from, where do we go to? Environ. Sci. Eur. 2018, 30, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 2011, 14, 1109. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Singh, A.K. Introduction to Nanoparticles and Nanotoxicology. Engineered Nanoparticles; Academic Press: Cambridge, MA, USA, 2016; pp. 1–18. [Google Scholar]
- Ealias, A.M.; Saravanakumar, M.P. A review on the classification, characterization, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 1–15. [Google Scholar] [CrossRef]
- Thomas, S.; Harshita, B.S.P.; Mishra, P.; Talegaonkar, S. Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Curr. Pharm. Des. 2015, 21, 6165–6188. [Google Scholar] [CrossRef]
- Sharma, A.; Ahmad, J.; Flora, S.J.S. Application of advanced oxidation processes and toxicity assessment of transformation products. Environ. Res. 2018, 167, 223–233. [Google Scholar] [CrossRef]
- Prasad, C.; Tang, H.; Liu, Q.Q.; Zulfiqar, S.; Shah, S.; Bahadur, I. An overview of semiconductors/layered double hydroxides composites: Properties, synthesis, photocatalytic and photoelectrochemical applications. J. Mol. Liq. 2019, 289, 111114. [Google Scholar] [CrossRef]
- Babu, D.S.; Srivastava, V.; Nidheesh, P.V.; Kumar, M.S. Detoxification of water and wastewater by advanced oxidation processes. Sci. Total Environ. 2019, 696, 133961. [Google Scholar] [CrossRef]
- Bishoge, O.K.; Zhang, L.; Suntu, S.L.; Jin, H.; Zewde, A.A.; Qi, Z. Remediation of water and wastewater by using engineered nanomaterials: A review. J. Environ. Sci. Health –Part. Toxichazardous Subst. Environ. Eng. 2018, 53, 537–554. [Google Scholar] [CrossRef]
- Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.A.W. Application of doped photocatalysts for organic pollutant degradation—A review. J. Environ. Manag. 2017, 198, 78–94. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, Q. Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100255. [Google Scholar] [CrossRef]
- Hernandez, R.; Martínez-Chávez, A.; Velázquez-Castillo, R.; Escobar-Alarcón, L.; Escalante, K. X-ray diffraction Rietveld structural analysis of Au–TiO2 powders synthesized by sol–gel route coupled to microwave and sonochemistry. J. Sol.-Gel Sci. Technol. 2020, 95, 239–252. [Google Scholar] [CrossRef]
- Olvera-Rodríguez, I.; Hernandez, R.; Medel, A.; Guzmán, C.; Escobar-Alarcón, L.; Brillas, E.; Sirés, I.; Escalante, K. TiO2/Au/TiO2 multilayer thin-film photoanodes synthesized by pulsed laser deposition for photoelectrochemical degradation of organic pollutants. Sep. Purif. Technol. 2019, 224, 189–198. [Google Scholar] [CrossRef]
- Hernandez, R.; Olvera-Rodríguez, I.; Guzmán, C.; Medel, A.; Escobar-Alarcón, L.; Brillas, E.; Sirés, I.; Escalante, K. Microwave-assisted sol-gel synthesis of an Au-TiO2 photoanode for the advanced oxidation of paracetamol as model pharmaceutical pollutant. Electrochem. Commun. 2018, 96, 42–46. [Google Scholar] [CrossRef]
- Colín, D.; Martínez-Chávez, L.A.; Cuán, Á.; Elizalde, E.; Alvarado-Rivera, J.; Guzmán, C.; Escobar-Alarcón, L.; Escalante, K. Sonochemical coupled synthesis of Cr-TiO2 supported on Fe3 O4 structures and chemical simulation of the degradation mechanism of Malachite Green dye. J. Photochem. Photobiol. Chem. 2018, 364, 250–261. [Google Scholar] [CrossRef]
- Rodríguez-Méndez, A.; Guzmán, C.; Elizalde, E.; Eduardo, A.; Escobar-Alarcón, L.; Vega, M.; Alvarado-Rivera, J.; Escalante, K. Effluent Disinfection of Real Wastewater by Ag–TiO2 Nanoparticles Photocatalysis. J. Nanosci. Nanotechnol. 2017, 17, 711. [Google Scholar] [CrossRef]
- Pérez-Sánchez, L.; Rodríguez-Méndez, A.; Montufar-Reyes, I.; Trejo Hernandez, R.; Mayorga-Garay, M.; Montoya-Lizarraga, A.C.; Macías-Sámano, L.M.; Reséndiz-Luján, B.; Rodríguez-Morales, J.; Elizalde, E.; et al. Water Recycling in Biosystems for Food Production. In Biosystems Engineering: Biofactories for Food Production in the Century XXI; Guevara-Gonzalez, R., Torres-Pacheco, I., Eds.; Springer International Publishing: Cham, Switzerland, 2013; pp. 77–97. ISBN 978-3-319-03879-7. [Google Scholar]
- Garcia-Mier, L.; Jimenez Garcia, S.; Salazar, C.; Contreras-Medina, L.; Escalante, K.; Martinez, C.; García-Trejo, J.; Guevara-Gonzalez, R.; Feregrino-Perez, A. Strategies that Influence the Production of Secondary Metabolites in Plants; Springer International Publishing: Cham, Switzerland, 2019; pp. 231–270. ISBN 978-3-319-95353-3. [Google Scholar]
- Dolez, P.I. Chapter 1.1—Nanomaterials Definitions, Classifications, and Applications. In Nanoengineering; Dolez, P.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–40. ISBN 978-0-444-62747-6. [Google Scholar]
- Saleh, T.A. Nanomaterials: Classification, properties, and environmental toxicities. Environ. Technol. Innov. 2020, 101067. [Google Scholar] [CrossRef]
- Mathur, R.B.; Singh, B.P.; Pande, S. Carbon Nanomaterials Synthesis, Structure, Properties and Applications; CRC Press: Bora Raton, FL, USA, 2017; p. 284. [Google Scholar]
- Zaytseva, O.; Neumann, G. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 2016, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Sudha, P.N.; Sangeetha, K.; Vijayalakshmi, K.; Barhoum, A. Chapter 12—Nanomaterials history, classification, unique properties, production and market. In Emerging Applications of Nanoparticles and Architecture Nanostructures; Barhoum, A., Makhlouf, A.S.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 341–384. ISBN 978-0-323-51254-1. [Google Scholar]
- Hobson, D.W. Nanotoxicology: The Toxicology of Nanomaterials and Nanostructures. Int. J. Toxicol. 2016, 35, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Gautam, R.K.; Chattopadhyaya, M.C. Nanomaterials in the Environment: Sources, Fate, Transport, and Ecotoxicology. In Nanomaterials for Wastewater Remediation; Elsevier: Amsterdam, The Netherlands, 2016; pp. 311–326. ISBN 978-0-12-804609-8. [Google Scholar]
- Pacheco, I.; Vanner, R.; Buzea, C. Principles of nanotoxicology. In Proceedings of the Association of Industrial Metallizers, Coaters and Laminators Fall Technical Conference and 24th International Vacuum Web Coating Conference 2010, Myrtle Beach, SC, USA, 17–20 October 2010; pp. 1367–1393. [Google Scholar]
- Corredor, E.; Testillano, P.S.; Coronado, M.J.; González-Melendi, P.; Fernández-Pacheco, R.; Marquina, C.; Ibarra, M.R.; De La Fuente, J.M.; Rubiales, D.; Pérez-De-Luque, A.; et al. Nanoparticle penetration and transport in living pumpkin plants: In situ subcellular identification. BMC Plant. Biol. 2009, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tarafdar, J.; Xiong, Y.; Wang, W.-N.; Quinl, D.; Biswas, P. Standardization of size, shape and concentration of nanoparticle for plant application. Appl. Biol. Res. 2012, 14, 138–144. [Google Scholar]
- Zhu, H.; Han, J.; Xiao, J.Q.; Jin, Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 2008, 10, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Poborilova, Z.; Opatrilova, R.; Babula, P. Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ. Exp. Bot. 2013, 91, 1–11. [Google Scholar] [CrossRef]
- Speranza, A.; Crinelli, R.; Scoccianti, V.; Taddei, A.R.; Iacobucci, M.; Bhattacharya, P.; Ke, P.C. In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ. Pollut. 2013, 179, 258–267. [Google Scholar] [CrossRef]
- Yin, L.; Colman, B.P.; McGill, B.M.; Wright, J.P.; Bernhardt, E.S. Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants. PLoS ONE 2012, 7, e47674. [Google Scholar] [CrossRef] [Green Version]
- Yata, V.K.; Tiwari, B.C.; Ahmad, I. Nanoscience in food and agriculture: Research, industries and patents. Environ. Chem. Lett. 2018, 16, 79–84. [Google Scholar] [CrossRef]
- López-Valdez, F.; Miranda-Arámbula, M.; Ríos-Cortés, A.M.; Fernández-Luqueño, F.; De-la-Luz, V. Nanofertilizers and Their Controlled Delivery of Nutrients. In Agricultural Nanobiotechnology; Springer International Publishing: Cham, Switzerland, 2018; pp. 35–48. [Google Scholar]
- Vandevoort, A.R.; Arai, Y. Macroscopic observation of soil nitrification kinetics impacted by copper nanoparticles: Implications for micronutrient nanofertilizer. Nanomaterials 2018, 8, 927. [Google Scholar] [CrossRef] [Green Version]
- Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2018, 13, 677–684. [Google Scholar] [CrossRef]
- Pascoli, M.; Lopes-Oliveira, P.J.; Fraceto, L.F.; Seabra, A.B.; Oliveira, H.C. State of the art of polymeric nanoparticles as carrier systems with agricultural applications: A minireview. Energy Ecol. Environ. 2018, 3, 137–148. [Google Scholar] [CrossRef]
- Meena, V.S.; Maurya, B.R.; Verma, J.P.; Meena, R.S. Potassium Solubilizing Microorganisms for Sustainable Agriculture; Springer International Publishing: Cham, Switzerland, 2016; p. 331. ISBN 978-81-322-2776-2. [Google Scholar]
- Bala, R.; Kalia, A.; Dhaliwal, S.S. Evaluation of Efficacy of ZnO Nanoparticles as Remedial Zinc Nanofertilizer for Rice. J. Soil Sci. Plant. Nutr. 2019, 19, 379–389. [Google Scholar] [CrossRef]
- Madusanka, N.; Sandaruwan, C.; Kottegoda, N.; Sirisena, D.; Munaweera, I.; De Alwis, A.; Karunaratne, V.; Amaratunga, G.A.J. Urea–hydroxyapatite-montmorillonite nanohybrid composites as slow release nitrogen compositions. Appl. Clay Sci. 2017, 150, 303–308. [Google Scholar] [CrossRef]
- Rios, J.J.; Garcia-Ibañez, P.; Carvajal, M. The use of biovesicles to improve the efficiency of Zn foliar fertilization. Colloids Surf. B Biointerfaces 2019, 173, 899–905. [Google Scholar] [CrossRef]
- Li, Z.Z.; Chen, J.F.; Liu, F.; Liu, A.Q.; Wang, Q.; Sun, H.Y.; Wen, L.X. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest. Manag. Sci. 2007, 63, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Abigail, E.A.; Chidambaram, R. Nanotechnology in Herbicide Resistance. In Nanostructured Materials–Fabrication to Applications; IntechOpen: London, UK, 2017; pp. 207–212. [Google Scholar] [CrossRef] [Green Version]
- Grillo, R.; Pereira, A.E.S.; Nishisaka, C.S.; De Lima, R.; Oehlke, K.; Greiner, R.; Fraceto, L.F. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. J. Hazard. Mater. 2014, 278, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Shibin, O.M.; Yesodharan, S.; Yesodharan, E.P. Sunlight induced photocatalytic degradation of herbicide diquat in water in presence of ZnO. J. Environ. Chem. Eng. 2015, 3, 1107–1116. [Google Scholar] [CrossRef]
- Páez, M.R.; Ochoa-Muñoz, Y.; Rodriguez-Páez, J.E. Efficient removal of a glyphosate-based herbicide from water using ZnO nanoparticles (ZnO-NPs). Biocatal. Agric. Biotechnol. 2019, 22, 101434. [Google Scholar] [CrossRef]
- Rumi Ishiki, R.; Mitsugu Ishiki, H.; Takashima, K. Photocatalytic degradation of imazethapyr herbicide at TiO2/H2O interface. Chemosphere 2005, 58, 1461–1469. [Google Scholar] [CrossRef]
- Ismail, A.A.; Abdelfattah, I.; Helal, A.; Al-Sayari, S.A.; Robben, L.; Bahnemann, D.W. Ease synthesis of mesoporous WO3-TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination. J. Hazard. Mater. 2016, 307, 43–54. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A.A.; Kim, K.H. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J. Control. Release 2019, 294, 131–153. [Google Scholar] [CrossRef]
- Jampílek, J.; Kráľová, K. Nanopesticides: Preparation, targeting, and controlled release. In New Pesticides and Soil Sensors; Academic Press: Cambridge, MA, USA, 2017; pp. 81–127. [Google Scholar]
- Zhao, L.; Huang, Y.; Adeleye, A.S.; Keller, A.A. Metabolomics Reveals Cu (OH) 2 Nanopesticide-Activated Anti-oxidative Pathways and Decreased Beneficial Antioxidants in Spinach Leaves. Environ. Sci. Technol. 2017, 51, 10184–10194. [Google Scholar] [CrossRef] [Green Version]
- Bourguet, D.; Guillemaud, T. Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2016; p. 120. ISBN 978-3-319-26776-0. [Google Scholar]
- Reddy Pullagurala, V.L.; Adisa, I.O.; Rawat, S.; Kim, B.; Barrios, A.C.; Medina-Velo, I.A.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Finding the conditions for the beneficial use of ZnO nanoparticles towards plants-A review. Environ. Pollut. 2018, 241, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Affam, A.C.; Chaudhuri, M. Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. J. Environ. Manag. 2013, 130, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Hanh, N.T.; Le Minh Tri, N.; Van Thuan, D.; Thanh Tung, M.H.; Pham, T.D.; Minh, T.D.; Trang, H.T.; Binh, M.T.; Nguyen, M.V. Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst. J. Photochem. Photobiol. Chem. 2019, 382, 111923. [Google Scholar] [CrossRef]
- Can, K.; Üzer, A.; Apak, R. A manganese oxide (MnOx)-Based colorimetric nanosensor for indirect measurement of lipophilic and hydrophilic antioxidant capacity. Anal. Methods 2020, 12, 448–455. [Google Scholar] [CrossRef]
- Li, M.; Xu, G.; Yang, X.; Zeng, Y.; Yu, Y. Metal oxide nanoparticles facilitate the accumulation of bifenthrin in earthworms by causing damage to body cavity. Environ. Pollut. 2020, 263, 114629. [Google Scholar] [CrossRef]
- Chen, J.; Wu, L.; Lu, M.; Lu, S.; Li, Z.; Ding, W. Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens. Front. Microbiol. 2020, 11, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahoo, D.; Mandal, A.; Mitra, T.; Chakraborty, K.; Bardhan, M.; Dasgupta, A.K. Nanosensing of Pesticides by Zinc Oxide Quantum Dot: An Optical and Electrochemical Approach for the Detection of Pesticides in Water. J. Agric. Food Chem. 2018, 66, 414–423. [Google Scholar] [CrossRef]
- Jahangirian, H.; Rafiee-Moghaddam, R.; Jahangirian, N.; Nikpey, B.; Jahangirian, S.; Bassous, N.; Saleh, B.; Kalantari, K.; Webster, T.J. Green Synthesis of Zeolite/Fe(2)O(3) Nanocomposites: Toxicity & Cell Proliferation Assays and Application as a Smart Iron Nanofertilizer. Int. J. Nanomed. 2020, 15, 1005–1020. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, H.A.; Khairy, M.; Rashwan, F.A.; Abdel-Hafez, H.F. Synthesis and characterization of silica nanostructures for cotton leaf worm control. J. Nanostructure Chem. 2017, 7, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Sachdeva, S.; Chaudhary, S.; Chaudhary, G.R. Assessing the potential application of bio-compatibly tuned nanosensor of Yb2O3 for selective detection of imazapyr in real samples. Colloids Surf. Phys. Eng. Asp. 2020, 593, 124612. [Google Scholar] [CrossRef]
- Irshad, M.A.; Nawaz, R.; Zia ur Rehman, M.; Imran, M.; Ahmad, J.; Ahmad, S.; Inam, A.; Razzaq, A.; Rizwan, M.; Ali, S. Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Chemosphere 2020, 258, 127352. [Google Scholar] [CrossRef] [PubMed]
- Nesakumar, N.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Electrochemical acetylcholinesterase biosensor based on ZnO nanocuboids modified platinum electrode for the detection of carbosulfan in rice. Biosens. Bioelectron. 2016, 77, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Etefagh, R.; Azhir, E.; Shahtahmasebi, N. Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci. Iran. 2013, 20, 1055–1058. [Google Scholar] [CrossRef]
- Ahmad, H.; Venugopal, K.; Rajagopal, K.; De Britto, S.; Nandini, B.; Pushpalatha, H.G.; Konappa, N.; Udayashankar, A.C.; Geetha, N.; Jogaiah, S. Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Eucalyptus globules and Their Fungicidal Ability Against Pathogenic Fungi of Apple Orchards. Biomolecules 2020, 10, 425. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Liu, L.; Li, Y.; Yang, C.; Zhou, Z.; Nie, Y.; Wang, Y. Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water. Sens. Actuators B Chem. 2018, 256, 135–142. [Google Scholar] [CrossRef]
- Jameel, M.; Shoeb, M.; Khan, M.T.; Ullah, R.; Mobin, M.; Farooqi, M.K.; Adnan, S.M. Enhanced Insecticidal Activity of Thiamethoxam by Zinc Oxide Nanoparticles: A Novel Nanotechnology Approach for Pest Control. ACS Omega 2020, 5, 1607–1615. [Google Scholar] [CrossRef]
- Shokrzadeh, L.; Mohammadi, P.; Mahmoudian, M.R.; Basirun, W.J.; Bahreini, M. L-glycine-assisted synthesis of SnO2/Pd nanoparticles and their application in detection of biodeteriorating fungi. Mater. Chem. Phys. 2020, 240, 122172. [Google Scholar] [CrossRef]
- Naseem, F.; Zhi, Y.; Farrukh, M.A.; Hussain, F.; Yin, Z. Mesoporous ZnAl2Si10O24 nanofertilizers enable high yield of Oryza sativa L. Sci. Rep. 2020, 10, 10841. [Google Scholar] [CrossRef]
- Ma, X.; Sharifan, H.; Dou, F.; Sun, W. Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles. Chem. Eng. J. 2020, 384, 123802. [Google Scholar] [CrossRef]
- Oussou-Azo, A.; Nakama, T.; Nakamura, M.; Futagami, T.; Vestergaard, M. Antifungal Potential of Nanostructured Crystalline Copper and Its Oxide Forms. Nanomaterials 2020, 10, 1003. [Google Scholar] [CrossRef]
- Elnaggar, M.; Abdelsalam, N.; Fouda, M.; Mackled, M.; Al-Jaddadi, M.; Ali, H.; Siddiqui, M.H.; Kandil, E. Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest. Nanomaterials 2020, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Cota-Ruiz, K.; Ye, Y.; Valdes, C.; Deng, C.; Wang, Y.; Hernández-Viezcas, J.A.; Duarte-Gardea, M.; Gardea-Torresdey, J.L. Copper nanowires as nanofertilizers for alfalfa plants: Understanding nano-bio systems interactions from microbial genomics, plant molecular responses and spectroscopic studies. Sci. Total Environ. 2020, 742, 140572. [Google Scholar] [CrossRef] [PubMed]
- Malandrakis, A.A.; Kavroulakis, N.; Chrysikopoulos, C.V. Synergy between Cu-NPs and fungicides against Botrytis cinerea. Sci. Total Environ. 2020, 703, 135557. [Google Scholar] [CrossRef] [PubMed]
- Abbasifar, A.; Shahrabadi, F.; ValizadehKaji, B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant. Nutr. 2020, 43, 1104–1118. [Google Scholar] [CrossRef]
- Paulkumar, K.; Gnanajobitha, G.; Vanaja, M.; Rajeshkumar, S.; Malarkodi, C.; Pandian, K.; Annadurai, G. Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity Against Agricultural Plant Pathogens. Sci. World J. 2014, 2014, 829894. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Singh, H.B. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: Exploring their scope and potential in agriculture. Appl. Microbiol. Biotechnol. 2015, 99, 1097–1107. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, G.W.; Park, T.J. A facile and sensitive detection of organophosphorus chemicals by rapid aggregation of gold nanoparticles using organic compounds. Spec. Issue Biosens. 2014 2015, 67, 408–412. [Google Scholar] [CrossRef]
- Le, V.T.; Bach, L.G.; Pham, T.T.; Le, N.T.T.; Ngoc, U.T.P.; Tran, D.-H.N.; Nguyen, D.H. Synthesis and antifungal activity of chitosan-silver nanocomposite synergize fungicide against Phytophthora capsici. J. Macromol. Sci. Part. A 2019, 56, 522–528. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Devi, K.A.; Prajapati, D.; Bhagat, D.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Chitosan nanofertilizer to foster source activity in maize. Int. J. Biol. Macromol. 2020, 145, 226–234. [Google Scholar] [CrossRef]
- Santo Pereira, A.D.; Oliveira, H.C.; Fraceto, L.F. Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: A field study. Sci. Rep. 2019, 9, 7135. [Google Scholar] [CrossRef]
- Deshpande, P.; Dapkekar, A.; Oak, M.D.; Paknikar, K.M.; Rajwade, J.M. Zinc complexed chitosan/TPP nanoparticles: A promising micronutrient nanocarrier suited for foliar application. Carbohydr. Polym. 2017, 165, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wu, W.; Zhao, Q.; Wei, X.; Lu, Q. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens. Bioelectron. 2015, 68, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wang, L.; Zeng, B.; Zhao, F. Ionic liquid polymer functionalized carbon nanotubes-doped poly(3,4-ethylenedioxythiophene) for highly-efficient solid-phase microextraction of carbamate pesticides. J. Chromatogr. A 2016, 1444, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Panova, G.G.; Serebryakov, E.B.; Semenov, K.N.; Charykov, N.A.; Shemchuk, O.S.; Andrusenko, E.V.; Kanash, E.V.; Khomyakov, Y.V.; Shpanev, A.M.; Dulneva, L.L.; et al. Bioactivity Study of the C60-L-Threonine Derivative for Potential Application in Agriculture. J. Nanomater. 2019, 2019, 2306518. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cai, A.; Wen, X.; Jing, D.; Qi, H.; Yuan, H. Graphene oxide-Fe3O4 nanocomposites as high-performance antifungal agents against Plasmopara viticola. Sci. China Mater. 2017, 60, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, M.; Song, Y.; Li, H.; Huang, H.; Shao, M.; Liu, Y.; Kang, Z. Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon 2018, 136, 94–102. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Hu, B.; Yu, J.; Wang, J.; Guo, X. Graphene/Fe3O4 nanocomposite for effective removal of ten triazole fungicides from water solution: Tebuconazole as an example for investigation of the adsorption mechanism by experimental and molecular docking study. J. Taiwan Inst. Chem. Eng. 2019, 95, 635–642. [Google Scholar] [CrossRef]
- Kranner, I.; Minibayeva, F.V.; Beckett, R.P.; Seal, C.E. What is stress? Concepts, definitions and applications in seed science. N. Phytol. 2010, 188, 655–673. [Google Scholar] [CrossRef]
- Thakur, M.; Bhattacharya, S.; Khosla, P.K.; Puri, S. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J. Appl. Res. Med. Aromat. Plants 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Hakim, A.; Ullah, A.; Hussain, A.; Shaban, M.; Khan, A.H.; Alariqi, M.; Gul, S.; Jun, Z.; Lin, S.; Li, J.; et al. A plant defense tool against biotic and abiotic stresses. Plant. Physiol. Biochem. 2018, 123, 149–159. [Google Scholar] [CrossRef]
- Delgoda, R.; Murray, J.E. Evolutionary Perspectives on the Role of Plant Secondary Metabolites. In Pharmacognosy: Fundamentals, Applications and Strategy; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 93–100. ISBN 978-0-12-802099-9. [Google Scholar]
- Akram, R.; Fahad, S.; Masood, N.; Rasool, A.; Ijaz, M.; Ihsan, M.Z.; Maqbool, M.M.; Ahmad, S.; Hussain, S.; Ahmed, M.; et al. Plant Growth and Morphological Changes in Rice Under Abiotic Stress. In Advances in Rice Research for Abiotic Stress Tolerance; Hasanuzzaman, M., Nahar, K., Fujita, M., Biswas, J.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 69–85. [Google Scholar]
- Jan, S.; Ahmad, P. Metabolomics Studies of Stress in Plants. In Ecometabolomics; Academic Press: Cambridge, MA, USA, 2019; pp. 127–178. ISBN 978-0-12-814872-3. [Google Scholar]
- Miransari, M. Soybean production and heavy metal stress. In Abiotic and Biotic Stresses in Soybean Production; Elsevier: Amsterdam, The Netherlands, 2016; pp. 198–216. ISBN 978-0-12-801536-0. [Google Scholar]
- Kumar, R.; Mishra, R.K.; Mishra, V.; Qidwai, A.; Pandey, A.; Shukla, S.K.; Pandey, M.; Pathak, A.; Dikshit, A. Detoxification and Tolerance of Heavy Metals in Plants. In Plant Metal Interaction: Emerging Remediation Techniques; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 335–359. ISBN 978-0-12-803158-2. [Google Scholar]
- Shri, P.U.; Pillay, V. Excess of soil zinc interferes with uptake of other micro and macro nutrients in Sorghum bicolor (L.) plants. Indian J. Plant. Physiol. 2017, 22, 304–308. [Google Scholar] [CrossRef]
- Nautiyal, N.; Chatterjee, C. Molybdenum Stress-Induced Changes in Growth and Yield of Chickpea. J. Plant. Nutr. 2004, 27, 173–181. [Google Scholar] [CrossRef]
- Srivastava, S.; Dubey, R.S. Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul. 2011, 64, 1–16. [Google Scholar] [CrossRef]
- Eutrópio, F.J.; Ramos, A.C.; da Silva Folli-Pereira, M.; de Aquino Portela, N.; Biral dos Santos, J.; Melo da Conceição, J.; Bertolazi, A.A.; Firme, F.F.; Bastos de Souza, S.; Dorighetto Cogo, A.J.; et al. Heavy Metal Stress and Molecular Approaches in Plants. In Plant Metal Interaction: Emerging Remediation Techniques; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 531–543. ISBN 978-0-12-803158-2. [Google Scholar]
- Ovečka, M.; Takáč, T. Managing heavy metal toxicity stress in plants: Biological and biotechnological tools. Biotechnol. Adv. 2014, 32, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Berni, R.; Luyckx, M.; Xu, X.; Legay, S.; Sergeant, K.; Hausman, J.F.; Lutts, S.; Cai, G.; Guerriero, G. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environ. Exp. Bot. 2019, 161, 98–106. [Google Scholar] [CrossRef]
- Majeed, A.; Muhammad, Z.; Siyar, S. Assessment of heavy metal induced stress responses in pea (Pisum sativum L.). Acta Ecol. Sin. 2019, 39, 284–288. [Google Scholar] [CrossRef]
- Maleki, M.; Ghorbanpour, M.; Kariman, K. Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant. Gene 2017, 11, 247–254. [Google Scholar] [CrossRef]
- Saad, R.B.; Hsouna, A.B.; Saibi, W.; Hamed, K.B.; Brini, F.; Ghneim-Herrera, T. A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes. J. Plant. Physiol. 2018, 231, 234–243. [Google Scholar] [CrossRef]
- Abdal Dayem, A.; Hossain, M.; LEE, S.B.; Kim, K.; Saha, S.; Yang, G.-M.; Choi, H.; Cho, S.-G. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef] [Green Version]
- Rajeshwari, A.; Suresh, S.; Chandrasekaran, N.; Mukherjee, A. Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay. RSC Adv. 2016, 6, 24000–24009. [Google Scholar] [CrossRef]
- Qian, H.; Peng, X.; Han, X.; Ren, J.; Sun, L.; Fu, Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. 2013, 25, 1947–1956. [Google Scholar] [CrossRef]
- Sosan, A.; Svistunenko, D.; Straltsova, D.; Tsiurkina, K.; Smolich, I.; Lawson, T.; Subramaniam, S.; Golovko, V.; Anderson, D.; Sokolik, A.; et al. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant. J. Cell Mol. Biol. 2016, 85, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.-M.; An, Y.-J.; Yoon, H.; Kweon, H.-S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 2008, 27, 1915–1921. [Google Scholar] [CrossRef] [PubMed]
- Fayez, K.A.; El-Deeb, B.A.; Mostafa, N.Y. Toxicity of biosynthetic silver nanoparticles on the growth, cell ultrastructure and physiological activities of barley plant. Acta Physiol. Plant. 2017, 39, 155. [Google Scholar] [CrossRef]
- Larue, C.; Castillo-Michel, H.; Sobanska, S.; Cécillon, L.; Bureau, S.; Barthès, V.; Ouerdane, L.; Carrière, M.; Sarret, G. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. J. Hazard. Mater. 2014, 264, 98–106. [Google Scholar] [CrossRef]
- Zhu, Z.-J.; Wang, H.; Yan, B.; Zheng, H.; Jiang, Y.; Miranda, O.R.; Rotello, V.M.; Xing, B.; Vachet, R.W. Effect of Surface Charge on the Uptake and Distribution of Gold Nanoparticles in Four Plant Species. Environ. Sci. Technol. 2012, 46, 12391–12398. [Google Scholar] [CrossRef]
- Lee, W.-M.; Kwak, J.I.; An, Y.-J. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere 2012, 86, 491–499. [Google Scholar] [CrossRef]
- Mahakham, W.; Theerakulpisut, P.; Maensiri, S.; Phumying, S.; Sarmah, A.K. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci. Total Environ. 2016, 573, 1089–1102. [Google Scholar] [CrossRef]
- Park, S.; Ahn, Y.-J. Multi-walled carbon nanotubes and silver nanoparticles differentially affect seed germination, chlorophyll content, and hydrogen peroxide accumulation in carrot (Daucus carota L.). Biocatal. Agric. Biotechnol. 2016, 8, 257–262. [Google Scholar] [CrossRef]
- Tymoszuk, A.; Miler, N. Silver and gold nanoparticles impact on in vitro adventitious organogenesis in chrysanthemum, gerbera and Cape Primrose. Sci. Hortic. 2019, 257, 108766. [Google Scholar] [CrossRef]
- Kumar, V.; Guleria, P.; Kumar, V.; Yadav, S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci. Total Environ. 2013, 461–462, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Acharya, P.; Jayaprakasha, G.K.; Crosby, K.M.; Jifon, J.L.; Patil, B.S. Green-Synthesized Nanoparticles Enhanced Seedling Growth, Yield, and Quality of Onion (Allium cepa L.). ACS Sustain. Chem. Eng. 2019, 7, 14580–14590. [Google Scholar] [CrossRef]
- Arora, S.; Sharma, P.; Kumar, S.; Nayan, R.; Khanna, P.K.; Zaidi, M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant. Growth Regul. 2012, 66, 303–310. [Google Scholar] [CrossRef]
- Mikhailovna Korotkova, A.; Lebedev, S.V.; Sizova, F.G.K. Biological efects in wheat (Triticum vulgare L.) under the influence of metal nanoparticles (Fe, Cu, Ni ) and their oxides ( Fe3O4, CuO, NiO ). Agrobiology 2017, 52, 172–182. [Google Scholar]
- Kumar, V.; Sharma, M.; Khare, T.; Wani, S.H. Impact of Nanoparticles on Oxidative Stress and Responsive Antioxidative Defense in Plants. In Nanomaterials in Plants, Algae, and Microorganisms; Elsevier: Amsterdam, The Netherlands, 2018; pp. 393–406. ISBN 978-0-12-811646-3. [Google Scholar]
- Rossi, L.; Sharifan, H.; Zhang, W.; Schwab, A.; Ma, X. Mutual effects and: In planta accumulation of co-existing cerium oxide nanoparticles and cadmium in hydroponically grown soybean (Glycine max (L.) Merr.). Environ. Sci. Nano 2018, 5, 150–157. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, S.; Luo, L.; Zhang, J.; Yang, K.; Christie, P. Accumulation, Speciation and Uptake Pathway of ZnO Nanoparticles in Maize. Environ. Sci Nano 2014, 2, 68–77. [Google Scholar] [CrossRef]
- Raliya, R.; Franke, C.; Chavalmane, S.; Nair, R.; Reed, N.; Biswas, P. Quantitative Understanding of Nanoparticle Uptake in Watermelon Plants. Front. Plant. Sci. 2016, 7, 1288. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.K.; Misra, P.; Kole, C. Uptake, Translocation, Accumulation, Transformation, and Generational Transmission of Nanoparticles in Plants. In Plant Nanotechnology: Principles and Practices; Kole, C., Kumar, D.S., Khodakovskaya, M.V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 183–218. ISBN 978-3-319-42154-4. [Google Scholar]
- Hu, P.; An, J.; Faulkner, M.M.; Wu, H.; Li, Z.; Tian, X.; Giraldo, J.P. Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. ACS Nano 2020, 14, 7970–7986. [Google Scholar] [CrossRef]
- Karny, A.; Zinger, A.; Kajal, A.; Shainsky-Roitman, J.; Schroeder, A. Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci. Rep. 2018, 8, 7589. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Zhu, L.; Le, X.C. Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environ. Pollut. 2017, 230, 302–310. [Google Scholar] [CrossRef]
- Mohammed AL-oubaidi, H.K.; Kasid, N.M. Increasing Phenolyic and Flavoniods Compoundes of Cicer Arietinum L. From Embryo Explant Using Titanum Dioxide Nanoparticle in Vitro. World J. Pharm. Res. 2015, 4, 1791–1799. [Google Scholar]
- Javed, R.; Yucesan, B.; Zia, M.; Gurel, E. Elicitation of Secondary Metabolites in Callus Cultures of Stevia rebaudiana Bertoni Grown Under ZnO and CuO Nanoparticles Stress. Sugar Tech. 2018, 20, 194–201. [Google Scholar] [CrossRef]
- Szymańska, R.; Kołodziej, K.; Ślesak, I.; Zimak-Piekarczyk, P.; Orzechowska, A.; Gabruk, M.; Zadło, A.; Habina, I.; Knap, W.; Burda, K.; et al. Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. Environ. Pollut. 2016, 213, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Kumar, S.; Alok, A.; Upadhyay, S.K.; Rawat, M.; Tsang, D.C.W.; Bolan, N.; Kim, K.H. The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J. Clean. Prod. 2019, 214, 1061–1070. [Google Scholar] [CrossRef]
- Fathi, A.; Zahedi, M.; Torabian, S.; Khoshgoftar, A. Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. J. Plant. Nutr. 2017, 40, 1376–1385. [Google Scholar] [CrossRef]
- Hu, J.; Guo, H.; Li, J.; Wang, Y.; Xiao, L.; Xing, B. Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. J. Nanobiotechnology 2017, 15, 51. [Google Scholar] [CrossRef] [Green Version]
- Barrios, A.C.; Rico, C.M.; Trujillo-Reyes, J.; Medina-Velo, I.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci. Total Environ. 2016, 563–564, 956–964. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, M.; Ghosh, I.; Godderis, L.; Hoet, P.; Mukherjee, A. Genotoxicity of engineered nanoparticles in higher plants. Mutat. Res. Toxicol. Environ. Mutagen. 2019. [Google Scholar] [CrossRef]
- Cox, A.; Venkatachalam, P.; Sahi, S.; Sharma, N. Reprint of: Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant. Physiol. Biochem. 2017, 110, 33–49. [Google Scholar] [CrossRef]
- Bradfield, S.J.; Kumar, P.; White, J.C.; Ebbs, S.D. Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: Yield effects and projected dietary intake from consumption. Plant. Physiol. Biochem. 2017, 110, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Lalau, C.M.; de Almeida Mohedano, R.; Schmidt, É.C.; Bouzon, Z.L.; Ouriques, L.C.; dos Santos, R.W.; da Costa, C.H.; Vicentini, D.S.; Matias, W.G. Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata. Protoplasma 2014, 252, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, J.; Ma, C.; Wang, Y.; Wu, C.; Huang, J.; Xing, B. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 2016, 159, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Esmailpour, M.; Gheranpaye, A. Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants. Acta Agric. Slov. 2016, 107, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Chen, J.; Dou, R.; Gao, X.; Mao, C.; Wang, L. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int. J. Environ. Res. Public. Health 2015, 12, 15100–15109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahra, Z.; Ali, M.A.; Parveen, A.; Kim, E.B.; Khokhar, M.F.; Baig, S.; Hina, K.; Choi, H.K.; Arshad, M. Exposure–Response of Wheat Cultivars to TiO2 Nanoparticles in Contrasted Soils. Soil Sediment. Contam. 2019, 28, 184–199. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, Y.; Liu, S.; Wang, G.; Zhang, J.; He, X.; Zhang, J.; Rui, Y.; Zhang, Z. Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environ. Pollut. 2017, 220, 1400–1408. [Google Scholar] [CrossRef]
- Saleh, A.M.; Hassan, Y.M.; Selim, S.; AbdElgawad, H. NiO-nanoparticles induce reduced phytotoxic hazards in wheat (Triticum aestivum L.) grown under future climate CO2. Chemosphere 2019, 220, 1047–1057. [Google Scholar] [CrossRef]
- Hong, J.; Rico, C.M.; Zhao, L.; Adeleye, A.S.; Keller, A.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ. Sci. Process. Impacts 2015, 17, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Raliya, R.; Biswas, P.; Tarafdar, J.C. TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol. Rep. 2015, 5, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; He, R.; Zhao, J.; Nie, G.; Xu, L.; Xing, B. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ. Pollut. 2016, 212, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Elmer, W.; De La Torre-Roche, R.; Pagano, L.; Majumdar, S.; Zuverza-Mena, N.; Dimkpa, C.; Gardea-Torresdey, J.; White, J.C. Effect of Metalloid and Metal Oxide Nanoparticles on Fusarium Wilt of Watermelon. Plant. Dis. 2018, 102, 1394–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasivelu, G.; Selvaraj, T.; Malaichamy, K.; Kathickeyan, D.; Shkolnik, D.; Chaturvedi, S. Nano-micronutrients [γ-Fe2O3 (iron) and ZnO (zinc)]: Green preparation, characterization, agro-morphological characteristics and crop productivity studies in two crops (rice and maize). N. J. Chem. 2020, 44, 11373–11383. [Google Scholar] [CrossRef]
- Ghoto, K.; Simon, M.; Shen, Z.-J.; Gao, G.-F.; Li, P.-F.; Li, H.; Zheng, H.-L. Physiological and Root Exudation Response of Maize Seedlings to TiO2 and SiO2 Nanoparticles Exposure. Bio. Nano. Sci. 2020, 10, 473–485. [Google Scholar] [CrossRef]
- Ullah, S.; Adeel, M.; Zain, M.; Rizwan, M.; Irshad, M.K.; Jilani, G.; Hameed, A.; Khan, A.; Arshad, M.; Raza, A. Physiological and biochemical response of wheat (Triticum aestivum) to TiO2 nanoparticles in phosphorous amended soil: A full life cycle study. J. Environ. Manag. 2020, 263, 110365. [Google Scholar] [CrossRef]
- Al-Amri, N.; Tombuloglu, H.; Slimani, Y.; Akhtar, S.; Barghouthi, M.; Almessiere, M.; Alshammari, T.; Baykal, A.; Sabit, H.; Ercan, I. Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). Ecotoxicol. Environ. Saf. 2020, 194, 110377. [Google Scholar] [CrossRef] [PubMed]
- Pelegrino, M.T.; Kohatsu, M.Y.; Seabra, A.B.; Monteiro, L.R.; Gomes, D.G.; Oliveira, H.C.; Rolim, W.R.; de Jesus, T.A.; Batista, B.L.; Lange, C.N. Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environ. Monit. Assess. 2020, 192, 1–14. [Google Scholar] [CrossRef]
- Hayes, K.L.; Mui, J.; Song, B.; Sani, E.S.; Eisenman, S.W.; Sheffield, J.B.; Kim, B. Effects, uptake, and translocation of aluminum oxide nanoparticles in lettuce: A comparison study to phytotoxic aluminum ions. Sci. Total Environ. 2020, 719, 137393. [Google Scholar] [CrossRef]
- De, A.; Chakrabarti, M.; Ghosh, I.; Mukherjee, A. Evaluation of genotoxicity and oxidative stress of aluminium oxide nanoparticles and its bulk form in Allium cepa. Nucl. 2016, 59, 219–225. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, F.; Ma, C.; Rui, Y.; Tsang, D.C.W.; Xing, B. Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. J. Environ. Manag. 2019, 241, 319–327. [Google Scholar] [CrossRef]
- Husen, A.; Siddiqi, K.S. Carbon and fullerene nanomaterials in plant system. J. Nanobiotechnol. 2014, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Ma, C.; Zhang, Z.; Song, Y.; Cao, W.; Guo, J.; Guopeng, Z.; Yukui, R.; Liu, L.; Xing, B. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ. Pollut. 2017, 232, 123–1236. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.; Mohamed, S.; Gao, W.; Maekawa, T.; Yoshida, Y.; Ajayan, P.; Kumar, S. Effect of Carbon Nanomaterials on the Germination and Growth of Rice Plants. J. Nanosci. Nanotechnol. 2012, 12, 2212–2220. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Sonkar, S.; Sarkar, S. Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 2011, 3, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Xu, B.; Ma, C.; Shang, J.; Gu, W.; Li, W.; Hou, T.; Xiang, Y.; Cao, W.; Xing, B.; et al. Synthesis of novel mesoporous carbon nanoparticles and their phytotoxicity to rice (Oryza sativa L.). J. Saudi Chem. Soc. 2019, 23, 75–82. [Google Scholar] [CrossRef]
- Ahmadi, S.Z.; Ghorbanpour, M.; Aghaee, A.; Hadian, J. Deciphering morpho-physiological and phytochemical attributes of Tanacetum parthenium L. plants exposed to C60 fullerene and salicylic acid. Chemosphere 2020, 259, 127406. [Google Scholar] [CrossRef] [PubMed]
- Begum, P.; Ikhtiari, R.; Fugetsu, B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 2011, 49, 3907–3919. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Mu, L.; Li, D.; Ouyang, S.; He, C.; Hu, X. Effects of the size and oxidation of graphene oxide on crop quality and specific molecular pathways. Carbon 2018, 140, 352–361. [Google Scholar] [CrossRef]
- Gao, M.; Xu, Y.; Chang, X.; Dong, Y.; Song, Z. Effects of foliar application of graphene oxide on cadmium uptake by lettuce. J. Hazard. Mater. 2020, 398, 122859. [Google Scholar] [CrossRef]
- Younes, N.A.; Dawood, M.F.A.; Wardany, A.A. Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits of Capsicum annuum L. and Solanum melongena L. Chemosphere 2019, 228, 318–327. [Google Scholar] [CrossRef]
- Gohari, G.; Safai, F.; Panahirad, S.; Akbari, A.; Rasouli, F.; Dadpour, M.R.; Fotopoulos, V. Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. Chemosphere 2020, 249, 126171. [Google Scholar] [CrossRef]
- Jordan, J.T.; Oates, R.P.; Subbiah, S.; Payton, P.R.; Singh, K.P.; Shah, S.A.; Green, M.J.; Klein, D.M.; Cañas-Carrell, J.E. Carbon nanotubes affect early growth, flowering time and phytohormones in tomato. Chemosphere 2020, 256, 127042. [Google Scholar] [CrossRef] [PubMed]
- Hatami, M. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions. Ecotoxicol. Environ. Saf. 2017, 142, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Polischchuk, S.D.; Nazarova, A.A.; Churilov, D.G.; Churilova, V.V.; Churilov, G.I.; Stepanova, I.A.; Arapov, I.S. Effect of “low doses” of multiwall carbon nanotubes when interacting with white mustard seeds and sprouts. Iop Conf. Ser. Earth Environ. Sci. 2020, 488, 012034. [Google Scholar] [CrossRef]
- Abdul-Ameer, M.; Almousawy, N. Growth and productivity of Onion (Allium cepa L.) as influenced by set size and spraying with Nanocarbon. J. Phys. Conf. Ser. 2019, 1294, 062035. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Sachdev, D.; Pasricha, R.; Maheshwari, P.H.; Taneja, N.K. Zinc-Supported Multiwalled Carbon Nanotube Nanocomposite: A Synergism to Micronutrient Release and a Smart Distributor to Promote the Growth of Onion Seeds in Arid Conditions. ACS Appl. Mater. Interfaces 2018, 10, 36733–36745. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, G.; Zhang, X.; Chen, Z.; Cai, Y.; Yu, W.; Liu, H.; Shan, J.; Li, R.; Liu, Y.; et al. Bioimaging Application and Growth-Promoting Behavior of Carbon Dots from Pollen on Hydroponically Cultivated Rome Lettuce. ACS Omega 2017, 2, 3958–3965. [Google Scholar] [CrossRef] [Green Version]
- Zhai, G.; Gutowski, S.M.; Walters, K.S.; Yan, B.; Schnoor, J.L. Charge, Size, and Cellular Selectivity for Multiwall Carbon Nanotubes by Maize and Soybean. Environ. Sci. Technol. 2015, 49, 7380–7390. [Google Scholar] [CrossRef]
- Wiesner, M.; Hanschen, F.S.; Maul, R.; Neugart, S.; Schreiner, M.; Baldermann, S. Nutritional Quality of Plants for Food and Fodder. In Encyclopedia of Applied Plant Sciences; Thomas, B., Murphy, D.J., Murray, B.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 285–291. ISBN 978-0-12-394808-3. [Google Scholar]
- Davey, M. Secondary Metabolism in Plant Cell Cultures. In Encyclopedia of Applied Plant Sciences; Thomas, B., Murphy, D.J., Murray, B.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 462–467. ISBN 978-0-12-394808-3. [Google Scholar]
- Liu, R.; So, P.-K.; Wong, M.Y.-M.; Hu, B.; Yao, Z.-P. In Vivo Detection of Secondary Metabolites. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-12-409547-2. [Google Scholar]
- Aluko, R.E. Plant Derived Bioactives. In Comprehensive Biotechnology, Second Edition; Murray., M.Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 501–515. ISBN 978-0-08-088504-9. [Google Scholar]
- Jamwal, K.; Bhattacharya, S.; Puri, S. Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J. Appl. Res. Med. Aromat. Plants 2018, 9, 26–38. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Ghassemi, B.; Hosseini, R.; Dehghan Nayeri, F. Effects of cobalt nano particles on artemisinin production and gene expression in Artemisia annua. Turk. J. Bot. 2015, 39, 769–777. [Google Scholar] [CrossRef]
- Ghanati, F.; Bakhtiarian, S. Effect of Methyl Jasmonate and Silver Nanoparticles on Production of Secondary Metabolites by Calendula officinalis L (Asteraceae). Trop. J. Pharm. Res. 2014, 13, 1783–1789. [Google Scholar] [CrossRef] [Green Version]
- Ke, M.; Qu, Q.; Peijnenburg, W.J.G.M.; Li, X.; Zhang, M.; Zhang, Z.; Lu, T.; Pan, X.; Qian, H. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Sci. Total Environ. 2018, 644, 1070–1079. [Google Scholar] [CrossRef] [PubMed]
- Salman Khan, M.; Zaka, M.; Haider Abbasi, B.; Rahman, L.-; Shah, A. Seed germination and biochemical profile of Silybum marianum exposed to monometallic and bimetallic alloy nanoparticles. IET Nanobiotechnol. 2016, 10, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.D.; Agarwal, A.; Pradhan, S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol. Environ. Saf. 2018, 161, 624–633. [Google Scholar] [CrossRef]
- Syu, Y.; Hung, J.-H.; Chen, J.-C.; Chuang, H. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant. Physiol. Biochem. 2014, 83, 57–64. [Google Scholar] [CrossRef]
- Sadak, M.S. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull. Natl. Res. Cent. 2019, 43, 38. [Google Scholar] [CrossRef]
- Farghaly, F.; Nafady, N. Green Synthesis of Silver Nanoparticles Using Leaf Extract of Rosmarinus officinalis and Its Effect on Tomato and Wheat Plants. J. Agric. Sci. 2015, 7, 277. [Google Scholar] [CrossRef]
- Zhang, H.; Du, W.; Peralta-Videa, J.; Gardea-Torresdey, J.; White, J.; Keller, A.; Guo, H.; Ji, R.; Zhao, L. Metabolomics Reveals How Cucumber (Cucumis sativus) Reprograms Metabolites To Cope with Silver Ions and Silver Nanoparticle-Induced Oxidative Stress. Environ. Sci. Technol. 2018, 52, 8016–8026. [Google Scholar] [CrossRef]
- Tsygvintsev, P.N.; Goncharova, L.I.; Manin, K.V.; Rachkova, V.M. Morphophysiological features of wheat (Triticum aestivum L.) seedlings upon exposure to nickel nanoparticles. Selskokhozyaistvennaya Biol. 2018, 53, 578–586. [Google Scholar] [CrossRef]
- Miri, A.; Shakib, E.; Ebrahimi, O.; Sharifi-Rad, J. Impacts of Nickel Nanoparticles on Grow Characteristics, Photosynthetic Pigment Content and Antioxidant Activity of Coriandrum Sativum L. Orient. J. Chem. 2017, 33, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanpour, M.; Hatami, M.; Hatami, M. Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus Niger L. Plants with nano-sized titanium dioxide and bulk Application. Acta Agric. Slov. 2015, 105, 23–32. [Google Scholar] [CrossRef]
- Ghorbanpour, M. Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian J. Plant. Physiol. 2015, 20, 249–256. [Google Scholar] [CrossRef]
- Ahmad, B.; Shabbir, A.; Jaleel, H.; Khan, M.M.A.; Sadiq, Y. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Curr. Plant. Biol. 2018, 13, 6–15. [Google Scholar] [CrossRef]
- Garciá-López, J.I.; Zavala-Garcia, F.; Olivares-Saénz, E.; Lira-Saldivar, R.H.; Barriga-Castro, E.D.; Ruiz-Torres, N.A.; Ramos-Cortez, E.; Vázquez-Alvarado, R.; Ninõ-Medina, G. Zinc Oxide nanoparticles boosts phenolic compounds and antioxidant activity of capsicum annuum l. during germination. Agronomy 2018, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Večeřová, K.; Večeřa, Z.; Dočekal, B.; Oravec, M.; Pompeiano, A.; Tříska, J.; Urban, O. Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environ. Pollut. 2016, 218, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.M.; Rekha, K.; Rajakumar, G.; Thiruvengadam, M. Production of bioactive compounds and gene expression alterations in hairy root cultures of chinese cabbage elicited by copper oxide nanoparticles. Plant. Cell Tissue Organ. Cult. 2018, 134, 95–106. [Google Scholar] [CrossRef]
- Tian, H.; Ghorbanpour, M.; Kariman, K. Manganese oxide nanoparticle-induced changes in growth, redox reactions and elicitation of antioxidant metabolites in deadly nightshade (Atropa belladonna L.). Ind. Crop. Prod. 2018, 126, 403–414. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Khan, M.R.; Abd_Allah, E.F.; Parveen, A. Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases, and growth and physiological changes of beetroot. Int. J. Veg. Sci. 2019, 25, 409–430. [Google Scholar] [CrossRef]
- Riahi-Madvar, A.; Aminizadeh, M.; Mohammadi, M. Nano-Metal oxides induced sulforaphane production and peroxidase activity in seedlings of Lepidium draba (Brassicaceae). Prog. Biol. Sci. 2016, 6, 75–83. [Google Scholar] [CrossRef]
- Moharrami, F.; Hosseini, B.B.; Sharafi, A.; Farjaminezhad, M. Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of Hyoscyamus reticulatus L. elicited by iron oxide nanoparticles. Vitr. Cell. Dev. Biol.–GPlant. 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, S.; Peralta-Videa, J.R.; Bandyopadhyay, S.; Castillo-Michel, H.; Hernandez-Viezcas, J.A.; Sahi, S.; Gardea-Torresdey, J.L. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J. Hazard. Mater. 2014, 278, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, E.; Nekoei, S.M.K.; Fotokian, M.H.; Davoodi, D.; Mirzaei, H.H.; Hasanloo, T. Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of St John’s wort (Hypericum perforatum L.). J. Med. Plants -Prod. 2013, 2, 177–184. [Google Scholar]
- Javed, R.; Mohamed, A.; Yücesan, B.; Gürel, E.; Kausar, R.; Zia, M. CuO nanoparticles significantly influence in vitro culture, steviol glycosides, and antioxidant activities of Stevia rebaudiana Bertoni. Plant. Cell Tissue Organ. Cult. 2017, 131, 611–620. [Google Scholar] [CrossRef]
- Javed, R.; Zia, M.; Yücesan, B.; Gürel, E. Abiotic stress of ZnO-PEG, ZnO-PVP, CuO-PEG and CuO-PVP nanoparticles enhance growth, sweetener compounds and antioxidant activities in shoots of Stevia rebaudiana Bertoni. Iet Nanobiotechnol. 2017, 11, 898–902. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, L.P.; Yi Li, W.; Wen Wang, J. Stimulation of Artemisinin Production in Artemisia annua Hairy Roots by Ag-SiO2 Core-shell Nanoparticles. Curr. Nanosci. 2013, 9, 363–370. [Google Scholar] [CrossRef]
- Yang, X.; Alidoust, D.; Wang, C. Effects of iron oxide nanoparticles on the mineral composition and growth of soybean (Glycine max L.) plants. Acta Physiol. Plant. 2020, 42, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Xu, M.; Xiao, L.; Dai, Z.; Li, J. The impacts of γ-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environ. Pollut. 2019, 249, 1011–1018. [Google Scholar] [CrossRef]
- Silva, S.; Ribeiro, T.P.; Santos, C.; Pinto, D.; Silva, A.M. TiO2 nanoparticles induced sugar impairments and metabolic pathway shift towards amino acid metabolism in wheat. J. Hazard. Mater. 2020, 399, 122982. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, Y.; Jiao, T.; Zhang, Y.; Chen, J.; Gao, Y. Effects of Copper Oxide Nanoparticles on the Growth of Rice (Oryza Sativa L.) Seedlings and the Relevant Physiological Responses. Int. J. Environ. Res. Public. Health 2020, 17, 1260. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, N.; Wang, W.; Sun, J.; Zhu, L. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. Front. Environ. Sci. Eng. 2020, 14, 1–12. [Google Scholar] [CrossRef]
- Yan, L.; Li, P.; Zhao, X.; Ji, R.; Zhao, L. Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles. Sci. Total Environ. 2020, 718, 137400. [Google Scholar] [CrossRef] [PubMed]
- Chahardoli, A.; Karimi, N.; Ma, X.; Qalekhani, F. Effects of engineered aluminum and nickel oxide nanoparticles on the growth and antioxidant defense systems of Nigella arvensis L. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Fan, X.; Li, X.; Zhang, Z.; Sun, L.; Fu, Z.; Lavoie, M.; Pan, X.; Qian, H. Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum. Environ. Pollut. 2017, 228, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.-M.; Venkidasamy, B.; Thiruvengadam, M. Nickel oxide nanoparticles cause substantial physiological, phytochemical, and molecular-level changes in Chinese cabbage seedlings. Plant. Physiol. Biochem. 2019, 139, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Tighe-Neira, R.; Reyes-Díaz, M.; Nunes-Nesi, A.; Recio, G.; Carmona, E.; Corgne, A.; Rengel, Z.; Inostroza-Blancheteau, C. Titanium dioxide nanoparticles provoke transient increase in photosynthetic performance and differential response in antioxidant system in Raphanus sativus L. Sci. Hortic. 2020, 269, 109418. [Google Scholar] [CrossRef]
- Tombuloglu, H.; Anıl, I.; Akhtar, S.; Turumtay, H.; Sabit, H.; Slimani, Y.; Almessiere, M.; Baykal, A. Iron oxide nanoparticles translocate in pumpkin and alter the phloem sap metabolites related to oil metabolism. Sci. Hortic. 2020, 265, 109223. [Google Scholar] [CrossRef]
- Salehi, H.; Miras-Moreno, B.; Chehregani Rad, A.; Pii, Y.; Mimmo, T.; Cesco, S.; Lucini, L. Relatively Low Dosages of CeO2 Nanoparticles in the Solid Medium Induce Adjustments in the Secondary Metabolism and Ionomic Balance of Bean (Phaseolus vulgaris L.) Roots and Leaves. J. Agric. Food Chem. 2020, 68, 67–76. [Google Scholar] [CrossRef]
- Chung, I.-M.; Rekha, K.; Venkidasamy, B.; Thiruvengadam, M. Effect of Copper Oxide Nanoparticles on the Physiology, Bioactive Molecules, and Transcriptional Changes in Brassica rapa ssp. rapa Seedlings. Water. Air. Soil Pollut. 2019, 230, 48. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, L.; Zhao, X.; Zhao, S.; Gu, X.; Du, W.; Wei, H.; Ji, R.; Zhao, L. Metabolomics Reveals the “Invisible” Responses of Spinach Plants Exposed to CeO2 Nanoparticles. Environ. Sci. Technol. 2019, 53, 6007–6017. [Google Scholar] [CrossRef]
- Gong, C.; Wang, L.; Li, X.; Wang, H.; Jiang, Y.; Wang, W. Effect of Y2 O3 Nanoparticles on Growth of Maize Seedlings. Iop Conf. Ser. Earth Environ. Sci. 2019, 300, 52049. [Google Scholar] [CrossRef]
- Jordan, J.T.; Singh, K.P.; Cañas-Carrell, J.E. Carbon-based nanomaterials elicit changes in physiology, gene expression, and epigenetics in exposed plants: A review. Nanomater. Plants 2018, 6, 29–35. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, R.; Fang, X.; Song, T.; Cai, X.; Liu, H.; Du, S. Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): Short- and long-term exposure studies. J. Hazard. Mater. 2016, 317, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Agathokleous, E.; Feng, Z.; Iavicoli, I.; Calabrese, E.J. The two faces of nanomaterials: A quantification of hormesis in algae and plants. Environ. Int. 2019, 131, 105044. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.E.A.; Castro, P.R.C.; Azevedo, R.A. Hormesis in plants under Cd exposure: From toxic to beneficial element. J. Hazard. Mater. 2020, 384, 121434. [Google Scholar] [CrossRef] [PubMed]
- Iavicoli, I.; Fontana, L.; Leso, V.; Calabrese, E.J. Hormetic dose–responses in nanotechnology studies. Sci. Total Environ. 2014, 487, 361–374. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.; Xu, X.; Wu, Y.; Zhuang, J.; Zhang, X.; Zhang, H.; Lei, B.; Zheng, M.; Liu, Y.; et al. Carbon Dots as a Protective Agent Alleviating Abiotic Stress on Rice (Oryza sativa L.) through Promoting Nutrition Assimilation and the Defense System. Acs Appl. Mater. Interfaces 2020, 12, 33575–33585. [Google Scholar] [CrossRef]
- Hu, X.; Kang, J.; Lu, K.; Zhou, R.; Mu, L.; Zhou, Q. Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci. Rep. 2014, 4, 6122. [Google Scholar] [CrossRef] [Green Version]
- Kole, C.; Kole, P.; Randunu, K.M.; Choudhary, P.; Podila, R.; Ke, P.C.; Rao, A.M.; Marcus, R.K. Nanobiotechnology can boost crop production and quality: First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol. 2013, 13, 37. [Google Scholar] [CrossRef] [Green Version]
- Lahiani, M.H.; Chen, J.; Irin, F.; Puretzky, A.A.; Green, M.J.; Khodakovskaya, M.V. Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon 2015, 81, 607–619. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, N.; Radjabian, T.; Soltani, B.M. Impacts of foliar exposure to multi-walled carbon nanotubes on physiological and molecular traits of Salvia verticillata L., as a medicinal plant. Plant. Physiol. Biochem. 2020, 150, 27–38. [Google Scholar] [CrossRef]
- Ghasempour, M.; Iranbakhsh, A.; Ebadi, M.; Oraghi Ardebili, Z. Multi-walled carbon nanotubes improved growth, anatomy, physiology, secondary metabolism, and callus performance in Catharanthus roseus: An in vitro study. 3 Biotech. 2019, 9, 404. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanpour, M.; Hadian, J. Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 2015, 94, 749–759. [Google Scholar] [CrossRef]
- Samadi, S.; Saharkhiz, M.J.; Azizi, M.; Samiei, L.; Ghorbanpour, M. Multi-walled carbon nanotubes stimulate growth, redox reactions and biosynthesis of antioxidant metabolites in Thymus daenensis celak. in vitro. Chemosphere 2020, 249, 126069. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Sun, C.; Li, X.; Yu, X.; Luo, C.; Shen, Y.; Qu, S. The effect of graphene oxide on adventitious root formation and growth in apple. Plant. Physiol. Biochem. 2018, 129, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Anjum, N.A.; Singh, N.; Singh, M.K.; Sayeed, I.; Duarte, A.C.; Pereira, E.; Ahmad, I. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci. Total Environ. 2014, 472, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, R.; Ju, Q.; Xu, J. Physiological, Metabolic, and Transcriptomic Analyses Reveal the Responses of Arabidopsis Seedlings to Carbon Nanohorns. Environ. Sci. Technol. 2020, 54, 4409–4420. [Google Scholar] [CrossRef]
- Zhou, Q.; Hu, X. Systemic Stress and Recovery Patterns of Rice Roots in Response to Graphene Oxide Nanosheets. Environ. Sci. Technol. 2017, 51, 2022–2030. [Google Scholar] [CrossRef]
Nanoparticle | Agricultural Use | Ref |
---|---|---|
Metal oxide NPs | ||
ZnO | Remediation and fortification of rice with low concentrations of Zn in soil. | [50] |
MnOx | Colorimetric nanosensor for indirect measurement of antioxidant capacity. | [67] |
CuO, ZnO | Both NPs facilitate bifenthrin insecticide uptake in Eisenia fetida earthworms compared to only bifenthrim exposure. | [68] |
MnO | Antifungal activity against soil-borne pathogens (P. nicotianae, T. basicola) with possibility to control other plant pathogens. | [69] |
ZnO quantum dot | Sensor for pesticide detection in water. | [70] |
Zeolite/Fe2O3 | Nanofertilizer with less toxic effect toward humans compared to other fertilizers. | [71] |
SiO2 | Insecticide properties against leaf worm (Spodoptera littoralis). | [72] |
Yb2O3 | Fluorescent sensor for imazapyr herbicide detection. | [73] |
TiO2 | Antifungal activity against wheat rust. | [74] |
ZnO nanobuboids | Pt/ZnO/AChE/Chitosan bioelectrode for sensing carbosulfan pesticide in rice. | [75] |
CuO | Biosensor for detection of Aspergillus niger fungus. | [76] |
ZnO | Fungicidal activity against multiple pathogenic fungi of apple orchards (Alternaria mali, Botryosphaeria dothidea, Diplodia seriata). | [77] |
Cu-TiO2 | Electrochemical sensor for the selective detection of methyl parathion pesticide. | [78] |
ZnO | NPs enhances thiamethoxam insecticidal activity against Spodoptera litura larvae. | [79] |
SnO2/Pd | Nanosensor for the detection of fungal volatile organic compounds. | [80] |
Urea-loaded mesoporous ZnAl2Si10O24 | Nanofertilizer for slow delivery of urea and zinc. | [81] |
ZnO | Nanofertilizer with capacity to reduce arsenic and cadmium contents in rice cultures. | [82] |
CuO | Antifungal activity against plant pathogen Colletotrichum gloeoesporioides | [83] |
SiO2 | Maize nanofertilizer and low-dose pesticide for pest that can affect maize during storage post-harvest (Sitophilus oryzae, Rhizopertha dominica, Tribolium castaneum, Orizaephilus surinamenisis). | [84] |
Metallic NPs | ||
Cu nanowires | Fertilizer for improved plant physiological performance and agronomical parameters. | [85] |
Cu NPs | Metal NPs for synergic action with conventional fungicides, reducing fungicide uses. | [86] |
Zn and Cu | NPs for increased quantity and quality in basil. | [87] |
Ag | Fungicidal activity against agricultural pathogens. | [88,89] |
Au | NPs for colorimetric detection of organophosphorus pesticides. | [90] |
Organic NPs | ||
Ag@Chitosan | Synergetic antifungal activity with Antracol fungicide against Phytophthora capsici. | [91] |
Chitosan with Cu and salicylic acid | Nanofertilizer for obtaining higher crop yield. | [92] |
Alginate/chitosan Chitosan/tripolyphosphate | Nanocarrier for planth growth regulators (gibberellic acid) release. | [93] |
Zn–Chitosan | Complex for crop Zn biofortinification. | [94] |
Carbon Nanomaterials | ||
CNT–NH2 | Biosensor for organophosphorus pesticide detection. | [95] |
Ionic liquid polymer functionalized CNTs-doped poly(3,4-ethylenedioxythiophene) | Coating for high selective extraction of carbamate pesticides | [96] |
C60-L-Threoninde | NPs for decreasing pesticide load on the environment with plant growth-stimulating abilities. | [97] |
Graphene oxide–Fe3O4 | Antifungal agent against Plamopara viticola. | [98] |
Carbon dots | Agent for increasing growth and photosynthesis. | [99] |
Graphene/Fe3O4 | Agent for fungicide removal of triazole fungicides. | [100] |
NPs | Concentration | Plant | Effect | Ref |
---|---|---|---|---|
Ag | 10, 100, 1000 mg∙L−1 | Lettuce (Lactuca sativa) | No sign of phytotoxic effect on foliar application, Ag NPs were trapped in lettuce leaves. | [124] |
Au | 31.25 nM | Rice, perennial ryegrass, radish, and pumpkin | Positive charged NPs are taken by the root, while negative charged are easily translocated into shoots. | [125] |
Ag | 0, 5, 10, 20, and 40 mg∙L−1 | Mung bean (Phaseolus radiates) and sorghum (Sorghum bicolor) | Seedling growth affected by NPs, growth rate of P. radiatus not affected by Ag in soil media. | [126] |
Phytochemical capped Au NPs | 5–15 mg∙L−1 | Maize | Boosted germination of aged maize seed. | [127] |
Ag | 10, 100, 200, 500, 1000, 2000 mg∙L−1 | Carrot (Daucus carota L.) | Reduced germination rate, seed growth, seed protein, increased chlorophyll, and H2O2 content. | [128] |
Ag and Au | 10 and 30 mg∙L−1 | Chrysanthemum, gerbera, and cape primrose | Ag inhibits rhizogenesis in chrysanthemum and gerbera, Au enhances root regeneration (gerbera), while both NPs increase cape primrose micropropagation. | [129] |
Au | 10 μg∙L−1 | Arabidopsis thaliana | NPs enhance seed yield, germination rate, growth, and radical scavenging activity. | [130] |
Au and Ag | 5.4 mg∙L−1 | Onion (Allium cepa L.) | Au at 5.4 ppm enhances germination, plant height, leaf length, leaf diameter without toxicity symptoms; Ag improved onion seeds germination. | [131] |
Au | 0, 10, 25, 50 and 100 mg∙L−1 | Brassica juncea | Foliar spray increases plant height, stem diameter, seed yield (10 ppm), and reduced sugar content (25 ppm). | [132] |
Fe, Cu, Ni | 0.0125 to 1.0 M | Triticum vulgare L. | Fe NPs stimulated growth compared to control, Ni and Cu NPs caused toxic effects on growth as metal content elevated, they also caused at low concentrations root growth reduction. | [133] |
NPs | Concentration | Plant | Effect | Ref. |
---|---|---|---|---|
ZnO, CuO and CeO2 | 100, 500, and 1000 mg∙kg DW−1 | Sweet potato | Yield affected at high concentrations | [151] |
CuO | 0.1, 1.0, and 10.0 g∙L−1 | Duckweed | Changes in, growth rate, and photosynthetic content | [152] |
Fe2O3 | 20, 50, and 100 mg∙L−1 | Maize | Decrease in root length at concentrations of 50 and 100 mgL−1 | [153] |
TiO2 | 10 and 40 mg∙L−1 | Dragonhead | Increase in plant shoot and essential oil content | [154] |
ZnO | 2000 mg∙L−1 | Maize and rice | Root elongation significantly decreased | [155] |
TiO2 | 1000 mg∙L−1 | Wheat | Early growth parameter adversely affected | [156] |
CeO2 | 1000 and 2000 mg∙kg−1 | Romaine lettuce | Lower chlorophyll content and biomass production | [157] |
TiO2 | 100–1000 mg∙L−1 | Thale cress | Chlorophyll content reduction, plant biomass modification, and antioxidant enzymes alteration | [144] |
CeO2 | 250–500 mg∙kg−1 | Tomato | Increase in shoot length and chlorophyll content | [148] |
CoFe2O4 | 1000 mg∙L−1 | Tomato | No effects on germination, root length improved | [6] |
NiO2 | 120 mg∙kg−1 | Wheat | Reduction in plant growth, increase in antioxidant content and photosynthesis inhibition | [158] |
ZnO | 15, 62, 125, 250, and 500 mg∙L−1 | Wheat | Enhancement in root and shoot length | [145] |
CuO | 5, 10, and 20 mg∙L−1 | Alfalfa and Lettuce | Decrease in root and shoot length, modification in enzyme activity | [159] |
Al2O3 | 2000 mg∙L−1 | Maize | Slightly toxic to root elongation | [155] |
TiO2 | 10 mg∙L−1 | Mug bean | Modification in shoot length, root length, chlorophyll content, and total soluble leaf protein | [160] |
CuO | 10 mg∙L−1 | Thale cress | Root damage | [161] |
CuO | 500–1000 mg∙L−1 | Watermelon | CuO NPs increased biomass and produce more fruit than untreated controls | [162] |
γ-Fe2O3 | 100, 250, 500, 1000, and 2000 mg∙L−1 | Maize (Zea mays L) and rice (Oryza sativa) | γ-Fe2O3 caused the highest seed germination percentage and seedling vigor index at 500 ppm for both crops | [163] |
TiO2, SiO2 | 1000 mg∙L−1 | Maize seedlings (Zea mays L.) | SiO2 reduced shoot length and shoot fresh weight; TiO2 caused a pigment content reduction | [164] |
TiO2 | 30, 50, and 100 mg∙kg−1 | Wheat (Triticum aestivum) | NPs enhanced root and shoot length and nutrient content in shoots (Ca, Cu, Al, Mg), crude protein content enhanced with 50 mg∙L−1 exposure | [165] |
Fe2O3 | 500 mg∙kg−–1 | Wheat | Fe2O3 enhanced root length, plant height, biomass, and chlorophyll content, NPs were translocated to the leaves and caused root tip damage | [166] |
CuO | 0.2–300 μg∙mL−1 | Lettuce (Lactuca sativa L.) | Inhibition of seed germination and radicle growth (40 μg∙mL−1); S-nitrosothiols levels in radicles showed direct dose–response to NPs. | [167] |
Al2O3 | 0.4, 1, and 2 mg∙L−1 | Lettuce (Lactuca sativa L.) | NPs absorbed by root promoted macronutrient uptake, adsorption, and aggregation of NPs limited translocation to root | [168] |
Al2O3 | 1.25 to 5 μM | Allium cepa | Micronuclei and DNA damage with an increase in concertation | [169] |
TiO2, Fe2O3, CuO | 50 and 500 mg∙kg−1 | Wheat (Triticum aestivum) | Fe, Zn, and essential amino acid content decrease with CuO application, TiO2 increased amino acid accumulation, Fe2O3 increase cysteine and threonine contents | [170] |
NPs | Concentration | Plant | Effect | Ref |
---|---|---|---|---|
Mesoporous carbon | 0, 10, 50, and 150 mg∙L−1 | Rice (Oryza sativa L.) | Decrease in root and shoot length (150 mg∙L−1) and increase of phytohormones. | [175] |
Multiwalled CNTs | 10, 100, 200, 500, 1000, and 2000 mg∙L−1 | Carrot (Daucus carota L.) | No change in seed germination, decrease in in seed protein level and H2O2 content, increase in chlorophyll content (500 mg∙L−1). | [128] |
C60 and salicylic acid | 0, 125, 250, 500, and 1000 mg∙L−1 | Feverfew (Tanacetum patthenium L.) | Improved growth at higher concentrations, the maximum increase of flower at 1000 mg∙L−1, increase in chlorophyll content at low C60 levels. | [176] |
Graphene | 500–2000 mg∙L−1 | Cabbage, tomato, red spinach, lettuce | Plant growth and biomass inhibition, dose-dependent reduction of leaves number, reactive oxygen species (ROS), and cell damage increase; no significant toxic levels were found in lettuce. | [177] |
Graphene oxide (GO), GO quantum dots, and reduced GO (rGO) | 0.5, 5, and 50 mg∙kg−1 | Wheat | Decreased mineral elements, upregulation of sugar content, rGO downregulates proteins and reduces globulin, prolamin, amylose, and amylopectin. | [178] |
Graphene oxide | 0, 30, and 60 mg∙L−1 | Lettuce | Increased total length, hair root numbers (30 mg∙L−1), foliar application improved quality of lettuce, increase in sugars, proteins, and vitamin C (30 mg∙L−1). | [179] |
Graphene nanosheets | 0.1, 0.2, and 0.3 g∙L−1 | Pepper, (Capsicum annuum L.), eggplant, (Solanum melongena L.) | Improvement plant yield and growth, no membrane damage detected, nanosheets located inside the chloroplast, stimulation of sugars, and rise of H2O2. | [180] |
Multi-walled CNTs | 0, 25, 50, and 100 mg∙L−1 | Sweet basil Ocimum basilicum L. | NPs induces plant growth and elevates essential oil content, high dosages (100 mg∙L−1) lead to toxicity in plant tissue. | [181] |
Multi-walled CNT-carboxylic acid functionalized Single-wall CNTs (SWNT) | 1 and 10 mg∙kg−1 | Tomato | Carbon nanotubes (CNTs) did not affect plant growth and height, SWNT increases salicylic acid content. | [182] |
MWCNTs | 0, 125, 250, and 500 μg∙mL−1 | Cucurbita pepo L. | Reduction of germination percentage, shoot length, biomass, increase in oxidative damage. | [183] |
CNTs | 0.01 to 1000 g per ton of seeds | White mustard | Germination energy and viability inhibited by all concentrations except 0.01 g∙t−1. | [184] |
MWCNTs | 0 and 500 mg∙L−1 | Onion (Allium cepa L.) | Increase levels of plant height, chlorophyll rate, and leaf area. | [185] |
ZnO/MWCNTs | 0, 2, 5, 10, 15, 20, and 40 μg∙mL−1 | Onion (Allium cepa L.) | Enhanced seedling growth. | [186] |
Carbon dots | 0, 10, 20, and 30 mg∙L−1 | Lactuca sativa L. | Increase production yield, growth rate, and decrease of nitrates content. | [187] |
MWCNTs | 0, 10, and 50 mg∙L−1 | Maize and soybean | MWCNTs accumulated in xylem and phloem, stimulation of growth in maize and growth inhibition in soybean was observed, dry biomass of treated maize was higher than control. | [188] |
NPs | Plant Type | Nanoparticle Characteristics | Experiential Conditions | Effects | Ref |
---|---|---|---|---|---|
Ag | Rice | Size 18.6 nm | 0, 10, 20, and 40 mg∙L−1 | Increased content of chlorophyll a and carotenoid content, elevation of catalase (CAT), APX, and GR activity. | [199] |
Ag | Arabidopsis | Triangular (47 ± 7 nm), spherical (8 ± 2 nm), decahedral (45 ± 5 nm) | 100 μM | Spherical NPs enhanced anthocyanin accumulation in seedlings; the three morphologies induce protein accumulation. | [200] |
Ag | Fenugreek (Trigonella foenum-graecum) | Synthetized by reduction of silver nitrate. | 0, 20, 40, and 60 mg∙L−1 | Improved shoot length, leaves, and plant number, an increase of photosynthetic pigments (chlorophyll and carotenoids), phenolics, flavonoids, and tannins. | [201] |
Ag | Wheat and tomato | 17 nm | 100 mg∙L−1 (10 days exposure) | Ag NPs had no significant effect on germination, and pigment content on wheat and tomato exposed to Ag NPs caused a reduction in chlorophyll. | [202] |
Ag | Cucumber (Cucumis sativus) | Size: 20 nm. | Foliar application (4 and 40 mg/plant) | NPs caused an activation of antioxidant defense, upregulation of phenolic properties, and altered membrane properties. | [203] |
Ni | Triticum aestivum L. | 5 nm | 0.01, 0.1, 1, and 10 mg∙L−1 | Suppression of root growth at 1 and 10 mg∙L−1, the content of chlorophyll decreased due to NPs, carotenoids content decreased in a dose-dependent manner, flavonoid content also decreased. | [204] |
Ni | Corianderum sativum L. | 20 nm | 20, 40, and 80 mg∙L−1 | NPs decrease relative to water content, photosynthetic pigments, root and shoot elongation, antioxidant activity decreased in a concentration-dependent manner. | [205] |
NPs | Plant Type | Nanoparticle Characteristics | Experiential Conditions | Effects | Ref. |
---|---|---|---|---|---|
TiO2, ZnO | Beetroot | ≤ 40 nm size | Culture cell (0.25, 0.50 ml∙L−1 NPs). | ZnO and TiO2 improved chlorophyll content, plant growth, and carotenoid (terpenes) content. | [213] |
Fe3O4, CuO | Lepidium draba | Particle size of 60 nm and 55 m2g−1 surface area | Seed culture (0, 1, 5, 10, 20, and 40 mg∙L−1). | CAT and POD activity enhanced by both NPs, increased concentration of sulforaphane. | [214] |
Fe3O4 | Hyoscyamus reticulatus L. | Nanoparticle solution provide by Nanozaino Co., Tehran, Iran. | Hairy root culture with different concentrations (0, 450, 900, 1800, and 3600 mg∙L−1). | Antioxidant enzyme activity increased, hyoscyamine and scopolamine elicited by NPs. | [215] |
CeO2 | Phaseolus vulgaris var. | CeO2 rods 67*8 nm, 93.8 m2g−1 surface area. | Root exposure with NPs suspensions of 62.5, 125, 250, and 500 mg∙L−1. | Increase in soluble protein content by 204% at 500 mg∙L−1. | [216] |
ZnO, Fe3O4 | Hypericum perforatum. | Nanoparticle powder obtained from Plasma chem, Germany. | Cell culture with concentrations of (0, 50, 100, and 150 ppb). | Enhanced production of hypericin and hyperforin. | [217] |
CuO | Stevia rebaudiana. | 40–100 nm synthesided by co-precipitation method. | Murashige and Skoog medium (MS) (0, 0.1, 1, 10, 100, and 1000 mg∙L−1). | CuO oxidative stress activates the production of antioxidative molecules (phenols, flavonoids), CuO also enhanced rebaudioside A and stevioside (steviol glycosides) production. | [218] |
ZnO-polyethylene gycol (PEG), ZnO-polyvinyl pyrrolidone (PVP), CuO-PEG and CuO-PVP and CuO, ZnO. | Stevia rebaudiana | ZnO (34 nm), ZnO–PEG (26 nm), ZnO–PVP (32 nm), CuO (47 nm), CuO–PEG (27 nm), CuO–PVP (27 nm), synthetized by chemical co-precipitation. | Murashige and Skoog medium (1 and 10 mg∙L−1). | Metal oxide NPs capped with polymers resulted in larger steviol glycosides content, total phenolic content, and total flavonoid content compared with uncapped metal oxide NPs. | [219] |
Ag–SiO2 | Artemisia annua. | Core–shell structure (101.8 nm) | Hary root cultures (400, 900, 1800, and 3600 mg∙L−1). | Increased artemisinin content, enhaced activities of catalase (CAT). | [220] |
TiO2 | Salvia officinalis. | TiO2 anatase (10–15 nm), 200–240 m2∙g−1 surface area. | Solution sprayed to plants (0, 10, 50, 100, 200, and 1000 mg∙L−1). | Treated plants showed increased antioxidant activity, the highest concentrations of phenols and flavonoids were observed at 200 and 100 mg∙L−1. | [207] |
CuO | Brassica rapa spp. pekinensis | 25–55 nm particle size. | Hairy root cultures (0, 50, 100, and 250 mg∙L−1) | CuO elicited glucosinolates content; also, phenolic compounds were highly enriched. | [211] |
Bulk and nano TiO2 | Hyoscyamus niger L. | 10–15 nm, 200–240 m2∙g−1. | Solution sprayed to plants (0, 20, 40, and 80 mg∙L−1) | Increases superoxide dismutase (SOD) by nano and bulk TiO2, highest alkaloid (hyoscyamine and scopolamine) content registered in nano TiO2 at 80 and 20 mg∙L−1. | [206] |
Fe2O3Fulvic acid coated FeeO3, Fe-EDTA | Soybean (Glycine max L.) | 5 nm particle size | Foliar and soil exposure to NPs (15, 30, and 60 mg/pot) for eight weeks | No stress and growth disorders, Fe2O3 and fulvic acid-coated enhanced chlorophyll content, plant biomass, and root development. | [221] |
γ-Fe3O3Fe3O4 | Muskmelon (Cucumis melo) | γ-Fe3O3 (20 nm) Fe3O4 (20 nm) | Soil irrigation (100, 200, and 400 mg∙L−1) for 4 weeks | Increase chlorophyll and fruit weight at concentrations of 200 mg∙L−1 for both types of NPs. | [222] |
TiO2 | Wheat (Triticum aestivum) | Anatase/rutile mixture (80:20); 21 nm and 35.65 m2∙g−1 surface area | Soil irrigation (5, 50, and 150 mg∙L−1) for 21 days. | During treatment, roots upregulated monosaccharides and azelaic acid, triggering tyrosine metabolism; leaves showed upregulation of reserve sugars and tocopherol, phenulalanine, and tryptophan pathways. | [223] |
CuO | Rice (Oryza sativa L.) | Size ranging from 40 to 80 nm | Hydroponic treatment (62.5, 125, and 250 mg∙L−1). | Suppression of growth rate of rice seedlings; chlorophyll and carotenoid content in leaves decreased with NPs exposure. | [224] |
TiO2 | Rice (Oryza sativa L.) | Anatase (5–10 nm) | Soil exposure to NPs (0.1–100 mg∙L−1). | Increased biomass (>30%), the photosynthetic rate decreased at 10 and mg∙L−1 (17.2%), NPs caused a downregulation of energy consumption in metabolism. | [225] |
Fe3O4 | Maize (Zea mays) | 30 nm NPs, hydrodynamic diameter of 231.4 ± 17.38 nm, z potential of 17.97 mV | Soil exposure during 4-week treatment (50 and 500 mg∙kg−1). | No impact on biomass and photosynthesis, increased Fe accumulation in roots, metabolomics pathways related to defense were inactivated after NPs exposure. | [226] |
Al2O4, NiO | Nigella arvensis L | NiO (5–8 nm) Al2O4 (5 nm) | Hydroponically grown tissues (50, 100, 1000, and 2500 mg∙L−1). | Plant biomass increased at 50 and 100 mg∙L−1 (Al2O3) and 50 mg∙L−1 (NiO), while higher concentrations decreased biomass; increase in antioxidant capacity, total saponin content, and total phenolic content in plants treated with 100–2500 mg∙L−1 of Al2O3. | [227] |
Al2O4 | Arabidopsis thalian | Al2O3 hydrodynamic diameter of 687.34 nm at 0 h, 878.82 nm at 12 h, and 908.97 nm at 24 h exposure | 10-day exposure of 98 μM Al2O3. | No evidence of toxicity on photosynthesis, growth, and lipid peroxidation; NPs increased root weight, length, and the transcription of antioxidant-related genes. | [228] |
NiO | Chinee cabbage | 10–20 nm | 50, 250, and 500 mg∙L−1. | Chlorophyll, carotenoid, and sugar contents were reduced, while proline and anthocyanins were upregulated in NiO NPs-treated seedlings. | [229] |
TiO2 | Radish (Raphanus sativus L.) | 86 nm, zeta potential average of −7.0 mV, hydrodynamic diameter of 405 nm | Foliar application of NPs from 10 to 1500 mg∙L−1. | NPs caused an increase of photosynthesis and total phenols concentration, while higher doses of TiO2 contribute to instantaneous water-use efficiency. | [230] |
Fe3O4 | Pumpkin (Cucurbita maxima L.) | 10–40 nm | Hydroponic treatment of pumpkin seedlings for 1 week (100 mg∙L−1). | Fe3O4 were found on pumpkin phloem sap revealing nanoparticle translocation; secondary metabolite analysis shows a reduction in the oil-related metabolites such as methoxyacetic acid, 4-tetradecyl ester eicosane, and heneicosane. | [231] |
CeO2 | Bean (Phaseolus vulgaris L.) | 10−30 nm, surface area of 30–50 m2∙g−1 | Plants grown in solid medium (25, 50, and 100 mg∙L−1). | Ce accumulated in roots and translocated to aerial parts, NPs caused tissue-specific metabolic reprogramming. | [232] |
CuO | Brassica rapa | 25–55 nm | Seedling grown in culture boxes (50, 250, and 500 mg∙L−1 of NPs). | Chlorophyll, carotenoid, and sugar content decreased; proline and anthocyanins were enhanced with CuO treatment; ROS, malondialdehyde (MDA) and hydrogen peroxide production were enhanced by NPs. | [233] |
CeO2 | Spinach (Spinacia oleracea) | Diameter of approximately 4 nm | Foliar exposure for 4 weeks (0.3 and 3 mg per plant). | Photosynthetic pigment content, plant biomass, lipid peroxidation, and plant biomass were not affected, while both doses caused downregulation of amino acids and reduction of Zn and Ca in leaves. | [234] |
Y2O3 | Maize (Zea mays L.) | NPs size (30 nm), hydrodynamic size (300.5 ± 14.1 nm) Zeta potential (5.27 ± 0.03 mV) | Seed germination in plastic tubes with concentrations of 10, 30, 50, 100, and 500 mg∙L−1, for 6 days | NPs had no effect on germination rates; peroxidase (POD) and catalase (CAT) were enhanced by NPs, polar metabolites showed a dose-dependent increase in NPs. | [235] |
NPs | Plant type | Nanoparticle characteristics | Experiential conditions | Effects | Ref |
---|---|---|---|---|---|
MWCNTs | Rose periwinkle (Catharanthus roseus) | Young’s modulus: 1200, tensile strength: 150, density 2.6 g∙cm−3, thermal conductivity: 3000 W∙m−1∙k−1, electron conductivity: 10−5-10−7 S∙m−1. | Seeds are grown in MS medium at 0, 50, 100, and 150 mg∙L−1 | Increase in plant growth, biomass, root length, a slight increase in chlorophyll and carotenoids, increase in proteins, CAT, and POX enzymes. | [246] |
MWCNTs | Satureja khuzestanica | Diameter of 15 nm and 50 μm. | Callus culture 0, 25, 50, 100, 250, and 500 μg∙mL−1 | Enhanced flavonoids and phenols content in callus culture at 100 and 250 μg∙mL−1. | [247] |
MWCNTs | Thymus daenensis | 50 μm length, 233 m2∙g−1 surface area, 100 s∙cm−1 electrical conductivity, 3000 W∙m∙k−1. | MS media, 0, 125, 250, 500, 1000, and 2000 μg∙mL−1 | Increased seedling biomass and height, highest total phenolic content, total flavonoid content, and antioxidant activity achieved with 250 μg∙mL−1. | [248] |
GO | Gala apple (Malus domestica) | Particle diameter: 50–200 nm, thickness: 0.8–1.2 nm. | 0, 0.1, 1, and 10 mg∙L−1 (40 days’ treatment) | Inhibition of lateral roots (0.1–10 mg∙L−1), GO increases CAT, POD, and SOD activities, 0.1 mg∙L−1 increases auxin efflux carrier and auxin influx genes transcription. | [249] |
Single-bilayer GO | Faba bean (Vicia faba L.) | Size: 0.5–5 μm | 0, 100, 200, 400, 800, and 1600 mg∙L−1 | Decrease in growth, catalase, and ascorbate peroxidase activity, increase in electrolyte leakage. | [250] |
Carbon nano-horns | Arabidopsis thaliana | Pipe diameter: 2–5, pipe length: 10–20 nm | 0, 0.01, 0.05, 0.1, 0.3, 0.5, 1, 5, 10, 50, and 100 mg∙L−1 | Single-wall carbon nano-horns altered sugar and amino acid content at 0.1 mg∙L−1 and increased secondary metabolites such as nicotinamide, purines, and flavones. | [251] |
GO | Rice | Sheet thickness 1.12 nm, lateral length 0.5–2 μm | 0.01–1.0 mg∙L−1 | Upregulation of phenylalanine, secondary metabolism, inhibition of aquaporins. | [252] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramo, L.A.; Feregrino-Pérez, A.A.; Guevara, R.; Mendoza, S.; Esquivel, K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. Nanomaterials 2020, 10, 1654. https://doi.org/10.3390/nano10091654
Paramo LA, Feregrino-Pérez AA, Guevara R, Mendoza S, Esquivel K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. Nanomaterials. 2020; 10(9):1654. https://doi.org/10.3390/nano10091654
Chicago/Turabian StyleParamo, Luis A., Ana A. Feregrino-Pérez, Ramón Guevara, Sandra Mendoza, and Karen Esquivel. 2020. "Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends" Nanomaterials 10, no. 9: 1654. https://doi.org/10.3390/nano10091654
APA StyleParamo, L. A., Feregrino-Pérez, A. A., Guevara, R., Mendoza, S., & Esquivel, K. (2020). Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. Nanomaterials, 10(9), 1654. https://doi.org/10.3390/nano10091654