Self-Assembly Synthesis of the MoS2/PtCo Alloy Counter Electrodes for High-Efficiency and Stable Low-Cost Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of MoS2 Microspheres
2.3. Synthesis of the MoS2/PtCo-Alloy NP Composite Material
2.4. Preparedness of Counter Electrodes
2.5. Fabrication of DSSCs
2.6. Characterization
2.7. Electrochemical and Photovoltaic Measurements
3. Results
3.1. Cyclic Voltammetry Analysis
3.2. Electrochemical Impedance Analysis
3.3. Photovoltaic Performance of DSSCs
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Praneetha, S.; Murugan, A.V. Microwave-solvothermal synthesis of various TiO2 nano-morphologies with enhanced efficiency by incorporating Ni nanoparticles in an electrolyte for dye-sensitized solar cells. Inorg. Chem. Front 2017, 4, 1665–1678. [Google Scholar]
- Chen, D.; Huang, F.; Cheng, Y.B.; Caruso, R.A. Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells. Adv. Mater. 2009, 21, 2206–2210. [Google Scholar] [CrossRef]
- Balasingam, S.K.; Lee, M.; Kang, M.G.; Jun, Y. A p-Type NiO-Based Dye-Sensitized Solar Cell with an Open-Circuit Voltage of 0.35 V. Chem. Commun. 2013, 49, 1471–1487. [Google Scholar] [CrossRef] [Green Version]
- Shalini, S.; Balasundaraprabhu, R.; Kumar, T.S.; Prabavathy, N.; Senthilarasu, S.; Prasanna, S. Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): A review. Int. J. Energy Res. 2016, 40, 1303–1320. [Google Scholar] [CrossRef]
- Liu, G.; Kong, L.P.; Yang, W.G.; Mao, H.K. Pressure engineering of photovoltaic perovskites. Mater. Today 2019, 27, 91–106. [Google Scholar] [CrossRef]
- Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z. Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 2015, 18, 155–162. [Google Scholar] [CrossRef]
- Lee, C.-P.; Ho, K.-C. Poly(ionic liquid)s for dye-sensitized solar cells: A mini-review. Eur. Polym. J. 2018, 108, 420–428. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975–6023. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Duan, J.; Duan, Y.; He, B.; Yu, L. Recent advances in alloy counter electrodes for dye-sensitized solar cells. A critical review. Electrochim. Acta 2015, 178, 886–899. [Google Scholar] [CrossRef]
- Wu, M.; Ma, T. Recent progress of counter electrode catalysts in dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 16727–16742. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, J.; Jiao, Q.; Li, Y.; Liu, X.; Shi, D.; Wu, Q.; Zhao, Y.; Li, H. Sandwich-like octahedral cobalt disulfide/reduced graphene oxide as an efficient Pt-free electrocatalyst for high-performance dye-sensitized solar cells. Carbon 2017, 119, 225–234. [Google Scholar] [CrossRef]
- Longo, C.; De Paoli, M.A. Dye-sensitized solar cells: A successful combination of materials. Chem. Soc. 2003, 14, 889–901. [Google Scholar] [CrossRef]
- Yue, G.; Lin, J.Y.; Tai, S.Y.; Xiao, Y.; Wu, J. A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim. Acta 2012, 85, 162–168. [Google Scholar] [CrossRef]
- Olsen, E.; Hagen, G.; Lindquist, S.E. Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol. Energy Mater. Sol. Cells 2000, 63, 267–273. [Google Scholar] [CrossRef]
- Rahman, M.; Kojima, R.; Fihry, M.; Kimura, Y.; Niwano, M. Formation of Porous Titanium Film and Its Application to Counter Electrode for Dye-Sensitized Solar Cell. Jpn. J. Appl. Phys. 2010, 49, 122302. [Google Scholar] [CrossRef]
- He, B.; Meng, X.; Tang, Q. Low-Cost Counter Electrodes from CoPt Alloys for Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 4812–4818. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, P.; Duan, J.; Wang, X.; Wang, L.; Wang, Z.; Tang, Q. Ternary platinum alloy counter electrodes for high-efficiency dye-sensitized solar cells. Electrochim. Acta 2016, 190, 85–91. [Google Scholar] [CrossRef]
- Wang, C.; Markovic, N.; Stamenkovic, V. Advanced Platinum Alloy Electrocatalysts for the Oxygen Reduction Reaction. ACS Catal. 2012, 2, 891–898. [Google Scholar] [CrossRef]
- Shao, L.; Qian, X.; Li, H.; Xu, C.; Hou, L. Shape-controllable syntheses of ternary Ni-Co-Se alloy hollow microspheres as highly efficient catalytic materials for dye-sensitized solar cells. Chem. Eng. J. 2017, 315, 562–572. [Google Scholar] [CrossRef]
- Dao, V.D.; Choi, Y.; Yong, K.; Larina, L.L.; Shevaleevskiy, O.; Choi, H.S. A facile synthesis of bimetallic AuPt nanoparticles as a new transparent counter electrode for quantum-dot-sensitized solar cells. J. Power Sources 2015, 274, 831–838. [Google Scholar] [CrossRef]
- Jin, I.-K.; Dao, V.-D.; Larina, L.L.; Choi, H.-S. Optimum engineering of a PtSn alloys/reduced graphene oxide nanohybrid for a highly efficient counter electrode in dye-sensitized solar cells. J. Ind. Eng. Chem. 2016, 36, 238–244. [Google Scholar] [CrossRef]
- Kim, J.-S.; Dao, V.-D.; Larina, L.L.; Choi, H.-S. Optimum alloying of bimetallic PtAu nanoparticles used as an efficient and robust counter electrode material of dye-sensitized solar cells. J. Alloys Compd. 2016, 682, 706–712. [Google Scholar] [CrossRef]
- Dao, V.-D. Bimetallic PtSe nanoparticles incorporating with reduced graphene oxide as efficient and durable electrode materials for liquid-junction photovoltaic devices. Mater. Today Energy 2020, 16, 100384. [Google Scholar] [CrossRef]
- Dao, V.-D.; Larina, L.L.; Tran, Q.C.; Bui, V.T.; Nguyen, V.T.; Pham, T.D.; Mohamed, I.M.; Barakat, N.A.; Huy, B.T.; Choi, H.S. Evaluation of Pt-based alloy/graphene nanohybrid electrocatalysts for triiodide reduction in photovoltaics. Carbon 2017, 116, 294–302. [Google Scholar] [CrossRef]
- Saito, Y.; Kitamura, T.; Wada, Y.; Yanagida, S. Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem. Lett. 2002, 31, 1060–1061. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Q.; Gong, F.; Li, Y.; Zhou, G.; Wang, Z. In situ growth of oriented polyaniline nanowires array for efficient cathode of Co (III)/Co (II) mediated dye-sensitized solar cell. J. Mater. Chem. A 2013, 1, 97–104. [Google Scholar] [CrossRef]
- Chang, Q.; Huang, L.; Wang, J.; Ma, Z.; Li, P.; Yan, Y.; Zhu, J.; Xu, S.; Shen, L.; Chen, Q.; et al. Nanoarchitecture of variable sized graphene nanosheets incorporated into three-dimensional graphene network for dye sensitized solar cells. Carbon 2015, 85, 185–193. [Google Scholar] [CrossRef]
- Yue, G.; Wu, J.; Xiao, Y.; Huang, M.; Lin, J.; Lin, Y.J. High performance platinum-free counter electrode of molybdenum sulfide–carbon used in dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 1495–1501. [Google Scholar] [CrossRef]
- Murakami, T.N.; Ito, S.; Wang, Q.; Nazeeruddin, M.K.; Bessho, T.; Cesar, I.; Liska, P.; Humphry-Baker, R.; Comte, P.; Pechy, P.; et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 2006, 153, A2255. [Google Scholar] [CrossRef]
- Dao, V.-D.; Choi, Y.; Yong, K.; Larina, L.L.; Choi, H.S. Graphene-based nanohybrid materials as the counter electrode for highly efficient quantum-dot-sensitized solar cells. Carbon 2015, 84, 383–389. [Google Scholar] [CrossRef]
- Wu, M.; Wang, Y.; Lin, X.; Yu, N.; Wang, L.; Wang, L.; Hagfeldt, A.; Ma, T. Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2011, 13, 19298–19301. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Tang, Q.; Liu, J.; He, B.; Yu, L. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Angew. Chem. Int. Ed. 2014, 53, 14569–14574. [Google Scholar] [CrossRef]
- Huo, J.; Wu, J.; Zheng, M.; Tu, Y.; Lan, Z. Effect of ammonia on electrodeposition of cobalt sulfide and nickel sulfide counter electrodes for dye-sensitized solar cells. Electrochim. Acta 2015, 180, 574–580. [Google Scholar] [CrossRef]
- Yun, S.; Hagfeldt, A.; Ma, T. Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv. Mater. 2014, 26, 6210–6237. [Google Scholar] [CrossRef]
- Benck, J.D.; Hellstern, T.R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T.F. Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catal. 2014, 4, 3957–3971. [Google Scholar] [CrossRef]
- Alonso, G.; Berhault, G.; Aguilar, A.; Collins, V.; Ornelas, C.; Fuentes, S.; Chianelli, R.R. Characterization and HDS activity of mesoporous MoS2 catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates. J. Catal. 2002, 208, 359–369. [Google Scholar] [CrossRef]
- Jaramillo, T.F.; Jørgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Wang, H.; Cha, J.J.; Pasta, M.; Koski, K.J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett. 2013, 13, 1341–1347. [Google Scholar] [CrossRef]
- Zhu, G.; Xu, H.; Wang, H.; Wang, W.; Zhang, Q.; Zhang, L.; Sun, H. Microwave assisted synthesis of MoS2/nitrogen-doped carbon shell–core microspheres for Pt-free dye-sensitized solar cells. RSC Adv. 2017, 7, 13433–13437. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.S.; Lee, C.P.; Li, C.T.; Huang, Y.J.; Vittal, R.; Ho, K.C. Nitrogen-doped graphene/molybdenum disulfide composite as the electrocatalytic film for dye-sensitized solar cells. Electrochim. Acta 2016, 211, 164–172. [Google Scholar] [CrossRef]
- Liu, C.-J.; Tai, S.-Y.; Chou, S.-W.; Yu, Y.-C.; Chang, K.D.; Wang, S.; Chien, F.S.-S.; Lin, J.-Y.; Lin, T.-W. Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 21057. [Google Scholar] [CrossRef]
- Zheng, M.; Huo, J.; Tu, Y.; Wu, J.; Hu, L.; Dai, S. Flowerlike molybdenum sulfide/multi-walled carbon nanotube hybrid as Pt-free counter electrode used in dye-sensitized solar cells. Electrochim. Acta 2015, 173, 252–259. [Google Scholar] [CrossRef]
- Su, L.; Xiao, Y.; Han, G.; Lin, J.Y. One-step hydrothermal synthesis of feather duster-like NiS@MoS2 with hierarchical array structure for the Pt-free dye-sensitized solar cell. Nanoparticle Res. 2018, 20, 115. [Google Scholar] [CrossRef]
- Zheng, X.; Guo, J.; Shi, Y.; Xiong, F.; Zhang, W.H.; Ma, T.; Li, C. Low-cost and high-performance CoMoS4 and NiMoS4 counter electrodes for dye-sensitized solar cells. Chem. Commun. 2013, 49, 9645. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, Y.; Yang, J.; Wu, W.; Qian, X.; Hou, L. Co-Fe-MoSx hollow nanoboxes as high-performance counter electrode catalysts for Pt-free dye-sensitized solar cells. Chem. Eng. J. 2018, 343, 86–94. [Google Scholar] [CrossRef]
- Sim, E.; Park, E.; Dao, V.D.; Choi, H.S. Synthesis of PtSe catalysts using atmospheric-pressure plasma and their application as counter electrodes for liquid-junction photovoltaic devices. Catal. Today 2019, 337, 126–131. [Google Scholar] [CrossRef]
- Fang, H.; Yang, J.; Wen, M.; Wu, Q. Nanoalloy Materials for Chemical Catalysis. Adv. Mater. 2018, 30, 1–10. [Google Scholar] [CrossRef]
- Dao, V.D.; Jin, I.K.; Choi, H.S. Design of PtRu alloy/reduced graphene oxide nanohybrid counter electrodes for highly efficient dye-sensitized solar cells. Electrochim. Acta 2016, 201, 1–7. [Google Scholar] [CrossRef]
- Xiao, Y.; Han, G. Efficient hydrothermal-processed platinum–nickel bimetallic nano-catalysts for use in dye-sensitized solar cells. J. Power Sources 2015, 294, 8–15. [Google Scholar] [CrossRef]
- Bae, K.H.; Dao, V.D.; Choi, H.S. Utility of Pt in PtNi alloy counter electrodes as a new avenue for cost effective and highly efficient liquid junction photovoltaic devices. J. Colloid Interface Sci. 2017, 495, 78–83. [Google Scholar] [CrossRef]
- Nechiyil, D.; Vinayan, B.P.; Ramaprabhu, S. Tri-iodide reduction activity of ultra-small size PtFe nanoparticles supported nitrogen-doped graphene as counter electrode for dye-sensitized solar cell. J. Colloid Interface Sci. 2017, 488, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Omelianovych, O.; Dao, V.D.; Larina, L.L.; Choi, H.S. Optimization of the PtFe alloy structure for application as an efficient counter electrode for dye-sensitized solar cells. Electrochim. Acta 2016, 211, 842–850. [Google Scholar] [CrossRef]
- Tang, Q.; Zhang, H.; Meng, Y.; He, B.; Yu, L. Dissolution engineering of platinum alloy counter electrodes in dye-sensitized solar cells. Angew. Chem. Int. Ed. 2015, 54, 11448–11452. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Shin, S.; Bae, K.H.; Dao, V.D.; Choi, H.S. Electrochemical catalytic activity of PtxMo1-x alloy nanoparticles applied to the counter electrode of liquid junction photovoltaic devices. Solar Energy 2017, 153, 126–133. [Google Scholar] [CrossRef]
- Lee, W.Y.; Dao, V.D.; Choi, H.S. Shape-controlled synthesis of PtPd alloys as a low-cost and efficient counter electrode for dye-sensitized solar cells. RSC Adv. 2016, 6, 38310–38314. [Google Scholar] [CrossRef]
- Bae, K.-H.; Park, E.; Dao, V.-D.; Choi, H.-S. PtZn nanoalloy counter electrodes as a new avenue for highly efficient dye-sensitized solar cells. J. Alloy. Compd. 2017, 702, 449–457. [Google Scholar] [CrossRef]
- Chiang, C.C.; Hung, C.Y.; Chou, S.W.; Shyue, J.J.; Cheng, K.Y.; Chang, P.J.; Yang, Y.Y.; Lin, C.Y.; Chang, T.K.; Chi, Y.; et al. PtCoFe Nanowire Cathodes Boost Short—Circuit Currents of Ru (II)—Based Dye—Sensitized Solar Cells to a Power Conversion Efficiency of 12.29%. Adv. Funct. Mater. 2018, 28, 1–9. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, L.; Wang, Z.-S. Single-crystal CoSe2 nanorods as an efficient electrocatalyst for dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 16023–16029. [Google Scholar] [CrossRef]
- Chen, X.; Tang, Q.; He, B.; Lin, L.; Yu, L. Platinum-Free Binary Co-Ni Alloy Counter Electrodes for Efficient Dye-Sensitized Solar Cells NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. Angew. Chem. Int. Ed. 2014, 53, 10799–10803. [Google Scholar] [CrossRef]
- Gong, F.; Xu, X.; Li, Z.; Zhou, G.; Wang, Z.-S. NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. Chem. Commun. 2013, 49, 1437. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.-J.; Dao, V.-D.; Choi, H.-S. Cost-effective CoPd alloy/reduced graphene oxide counter electrodes as a new avenue for high-efficiency liquid junction photovoltaic devices. J. Alloy. Compd. 2017, 705, 610–617. [Google Scholar] [CrossRef]
- Sim, E.; Dao, V.-D.; Choi, H.-S. Pt-free counter electrode based on FeNi alloy/reduced graphene oxide in liquid junction photovoltaic devices. J. Alloy. Compd. 2018, 742, 334–341. [Google Scholar] [CrossRef]
- Oh, H.-J.; Dao, V.-D.; Ryu, K.-H.; Lee, J.-H.; Choi, H.-S. FeSn alloy/graphene as an electrocatalyst for the counter electrode of highly efficient liquid-junction photovoltaic devices. J. Alloy. Compd. 2018, 754, 139–146. [Google Scholar] [CrossRef]
- Oh, H.-J.; Dao, V.-D.; Choi, H.-S. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction. Appl. Surf. Sci. 2018, 435, 7–15. [Google Scholar] [CrossRef]
- Dao, V.-D.; Vu, N.H.; Yun, S. Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy 2020, 68, 104324. [Google Scholar] [CrossRef]
- Dao, V.-D.; Choi, H.-S. Carbon-Based Sunlight Absorbers in Solar-Driven Steam Generation Devices. Glob. Chall. 2018, 2, 1700094. [Google Scholar] [CrossRef]
- Dao, V.-D.; Nguyen, D.C.; Stręk, W. Enthusiastic discussions on solid physic and material science at SPMS2019. Sci. Technol. Dev. J. 2020, 23, 490. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Qu, Q.T.; Wan, Z.M.; Gao, T.; Zuo, Z.C.; Zheng, H.H. NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 22927–22934. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, H.; Yu, Q.; Wang, J.; Yu, C.; Wang, J.; Gao, S.; Jiao, S.; Zhang, X.; Wang, P. Single-Layer TiO2 Film Composed of Mesoporous Spheres for High-Efficiency and Stable Dye-Sensitized Solar Cells. ACS Sustain. Chem. Eng. 2018, 6, 3411–3418. [Google Scholar] [CrossRef]
- Liang, K.; Chianelli, R.; Chien, F.; Moss, S. Structure of poorly crystalline MoS2—A modeling study. J. Non-Cryst. Solids 1986, 79, 251–273. [Google Scholar] [CrossRef]
- Hu, Z.; Yu, J.C. Pt3Co-loaded CdS and TiO2 for photocatalytic hydrogen evolution from water. J. Mater. Chem. A 2013, 1, 12221–12228. [Google Scholar] [CrossRef]
- Xiong, Y.; Washio, I.; Chen, J.; Cai, H.; Li, Z.-Y.; Xia, Y. Poly(vinyl pyrrolidone): A Dual Functional Reductant and Stabilizer for the Facile Synthesis of Noble Metal Nanoplates in Aqueous Solutions. Langmuir 2006, 22, 8563–8570. [Google Scholar] [CrossRef]
- Kim, P.; Joo, J.B.; Kim, W.; Kim, J.; Song, I.K.; Yi, J. NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J. Power Sources 2006, 160, 987–990. [Google Scholar] [CrossRef]
- Chang, L.; Li, Y. One-step encapsulation of Pt-Co bimetallic nanoparticles within MOFs for advanced room temperature nanocatalysis. Mol. Catal. 2017, 433, 77–83. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, H.; Wan, M.; Dong, L.; Zhang, M.; Du, M. Highly efficient and durable PtCo alloy nanoparticles encapsulated in carbon nanofibers for electrochemical hydrogen generation. Chem. Commun. 2016, 52, 990–993. [Google Scholar] [CrossRef]
- Yoon, S.-W.; Dao, V.-D.; Larina, L.L.; Lee, J.-K.; Choi, H.-S. Optimum strategy for designing PtCo alloy/reduced graphene oxide nanohybrid counter electrode for dye-sensitized solar cells. Carbon 2016, 96, 229–236. [Google Scholar] [CrossRef]
- Zhangab, Y.; Xu, J.; Xu, P.; Zhu, Y.; Chen, X.; Yu, W. Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance. Nanotechnol. 2010, 21, 285501–285507. [Google Scholar] [CrossRef]
- Bhagwat, S.; Dani, R.; Goswami, P.; Kerawalla, M.A.K. Recent Advances in Optimization of Photoanodes and Counter Electrodes of Dye-Sensitized Solar Cells. Curr. Sci. 2017, 113, 228–235. [Google Scholar] [CrossRef]
- Sun, H.; Luo, Y.; Zhang, Y.; Li, N.; Yu, Z.; Li, K.; Meng, Q. In Situ Preparation of a Flexible Polyaniline/Carbon Composite Counter Electrode and Its Application in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 11673–11679. [Google Scholar] [CrossRef]
- Dao, V.-D.; Kim, S.-H.; Choi, H.-S.; Kim, J.-H.; Park, H.-O.; Lee, J.-K. Efficiency Enhancement of Dye-Sensitized Solar Cell Using Pt Hollow Sphere Counter Electrode. J. Phys. Chem. C 2011, 115, 25529–25534. [Google Scholar] [CrossRef]
CE | Jsc (mA cm−2) | Voc (mV) | FF | PCE (%) | Rs (Ω) | Rct (Ω) |
---|---|---|---|---|---|---|
Pure Pt | 17.978 | 718 | 0.655 | 8.45 | 11.17 | 0.71 |
MoS2/20 wt% PtCo | 18.487 | 715 | 0.640 | 8.46 | 61.69 | 1.04 |
MoS2/20 wt% Pt | 16.338 | 710 | 0.639 | 7.41 | 63.72 | 1.76 |
MoS2 microspheres | 15.247 1 | 703 2 | 0.616 3 | 6.61 | 71.32 4 | 5.18 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Z.; Wang, D.; Wang, J.; Jiao, S.; Huang, Y.; Zhao, S.; Zhang, B.; Ma, M.; Gao, S.; Feng, X.; et al. Self-Assembly Synthesis of the MoS2/PtCo Alloy Counter Electrodes for High-Efficiency and Stable Low-Cost Dye-Sensitized Solar Cells. Nanomaterials 2020, 10, 1725. https://doi.org/10.3390/nano10091725
Zeng Z, Wang D, Wang J, Jiao S, Huang Y, Zhao S, Zhang B, Ma M, Gao S, Feng X, et al. Self-Assembly Synthesis of the MoS2/PtCo Alloy Counter Electrodes for High-Efficiency and Stable Low-Cost Dye-Sensitized Solar Cells. Nanomaterials. 2020; 10(9):1725. https://doi.org/10.3390/nano10091725
Chicago/Turabian StyleZeng, Zhi, Dongbo Wang, Jinzhong Wang, Shujie Jiao, Yuewu Huang, Sixiang Zhao, Bingke Zhang, Mengyu Ma, Shiyong Gao, Xingguo Feng, and et al. 2020. "Self-Assembly Synthesis of the MoS2/PtCo Alloy Counter Electrodes for High-Efficiency and Stable Low-Cost Dye-Sensitized Solar Cells" Nanomaterials 10, no. 9: 1725. https://doi.org/10.3390/nano10091725
APA StyleZeng, Z., Wang, D., Wang, J., Jiao, S., Huang, Y., Zhao, S., Zhang, B., Ma, M., Gao, S., Feng, X., & Zhao, L. (2020). Self-Assembly Synthesis of the MoS2/PtCo Alloy Counter Electrodes for High-Efficiency and Stable Low-Cost Dye-Sensitized Solar Cells. Nanomaterials, 10(9), 1725. https://doi.org/10.3390/nano10091725