Introducing the Novel Mixed Gaussian-Lorentzian Lineshape in the Analysis of the Raman Signal of Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. New Lineshape Definition: Theoretical Bacground and Mathematical Details
- we need to fit each Raman spectra in the frequency domain with a number of peaks by using a computational optimization algorithm;
- the Fourier transform of the TCF arising from the stretched exponential relaxation cannot be calculated in closed form;
3.2. Check Versus Stretched Exponential
- we fix a set of parameters for a stretched exponential relaxation (β = 0.8)
- we compute the TCF Fourier transform numerically for each wavenumber
- we fit this Fourier transform with a single GauLor selecting its parameters with the fitting procedure detailed in the next paragraph
- -
- the stretched exponential based Raman peak is symmetrical with respect to its peak wavenumber [28],
- -
- the GauLor curve mimics very well the stretched exponential based peak,
3.3. Details of the Fitting Procedure and Evaluation of the Contribution of the Lorentzian and Gaussian Parts to the Overall Intensity of a Peak
3.4. Approach to the Fit of the Set of Samples
3.5. XRD Analysis
3.6. Raman Spectra Analysis
- it is based on two well assessed peaks for carbon sp2 coordinated materials;
- it takes into account the peculiarity of the impact of structural disorder and TCF on Raman spectra.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Merlen, A.; Buijnsters, J.; Pardanaud, C. A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons. Coatings 2017, 7, 153. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Frank, O.; Mohr, M.; Maultzsch, J.; Thomsen, C.; Riaz, I.; Jalil, R.; Novoselov, K.S.; Tsoukleri, G.; Parthenios, J.; Papagelis, K. Raman 2D-band splitting in graphene: Theory and experiment. ACS Nano 2011, 5, 2231–2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK, 2015. [Google Scholar]
- Franklin, R.E. Crystallite growth in graphitizing and non-graphitizing carbons. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1951, 209, 196–218. [Google Scholar]
- McDonald-Wharry, J.S.; Manley-Harris, M.; Pickering, K.L. Reviewing, Combining, and Updating the Models for the Nanostructure of Non-Graphitizing Carbons Produced from Oxygen-Containing Precursors. Energy Fuels 2016, 30, 7811–7826. [Google Scholar] [CrossRef]
- Eom, Y.; Son, S.M.; Kim, Y.E.; Lee, J.-E.; Hwang, S.-H.; Chae, H.G. Structure evolution mechanism of highly ordered graphite during carbonization of cellulose nanocrystals. Carbon 2019, 150, 142–152. [Google Scholar] [CrossRef]
- Potgieter-Vermaak, S.; Maledi, N.; Wagner, N.; Van Heerden, J.; Van Grieken, R.; Potgieter, J. Raman spectroscopy for the analysis of coal: A review. J. Raman Spectrosc. 2011, 42, 123–129. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2477–2512. [Google Scholar] [CrossRef]
- Ghosh, A.; Razzino, C.d.A.; Dasgupta, A.; Fujisawa, K.; Vieira, L.H.S.; Subramanian, S.; Costa, R.S.; Lobo, A.O.; Ferreira, O.P.; Robinson, J.; et al. Structural and electrochemical properties of babassu coconut mesocarp-generated activated carbon and few-layer graphene. Carbon 2019, 145, 175–186. [Google Scholar] [CrossRef]
- Feng, D.; Zhao, Y.; Zhang, Y.; Sun, S. Effects of H2O and CO2 on the homogeneous conversion and heterogeneous reforming of biomass tar over biochar. Int. J. Hydrogen Energy 2017, 42, 13070–13084. [Google Scholar] [CrossRef]
- Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M.M.; Cornet, A.; Cirera, A. The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. J. Phys. Chem. C 2015, 119, 10123–10129. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Zickler, G.A.; Smarsly, B.; Gierlinger, N.; Peterlik, H.; Paris, O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon 2006, 44, 3239–3246. [Google Scholar] [CrossRef]
- Sousa, D.V.d.; Guimarães, L.M.; Félix, J.F.; Ker, J.C.; Schaefer, C.E.R.; Rodet, M.J. Dynamic of the structural alteration of biochar in ancient Anthrosol over a long timescale by Raman spectroscopy. PLoS ONE 2020, 15, e0229447. [Google Scholar] [CrossRef]
- Smith, M.W.; Dallmeyer, I.; Johnson, T.J.; Brauer, C.S.; McEwen, J.-S.; Espinal, J.F.; Garcia-Perez, M. Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles. Carbon 2016, 100, 678–692. [Google Scholar] [CrossRef] [Green Version]
- Mašek, O.; Buss, W.; Roy-Poirier, A.; Lowe, W.; Peters, C.; Brownsort, P.; Mignard, D.; Pritchard, C.; Sohi, S. Consistency of biochar properties over time and production scales: A characterisation of standard materials. J. Anal. Appl. Pyrolysis 2018, 132, 200–210. [Google Scholar] [CrossRef] [Green Version]
- UK Biochar Research Centre. Available online: https://www.biochar.ac.uk/standard_materials.php (accessed on 19 March 2020).
- OSR550 Standard Biochar Specification Sheet—Version 1.0. Available online: http://www.charchive.org/record.php?record_id=98 (accessed on 13 August 2020).
- Lehmann, J.; Joseph, S. Biochar for Environmental Management; Earthscan: London, UK, 2009. [Google Scholar]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the “Debye-Scherrer equation”. Nature Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Kirillov, S. Novel approaches in spectroscopy of interparticle inter-actions. Vibrational line profiles and anomalous non-coincidence effects. In NoVel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations; Springer: Berlin/Heidelberg, Germany, 2004; pp. 193–227. [Google Scholar]
- Kirillov, S.A. Time-correlation functions from band-shape fits without Fourier transform. Chem. Phys. Lett. 1999, 303, 37–42. [Google Scholar] [CrossRef]
- Birge, N.; Jeong, Y.; Nagel, S.R.; Bhattacharya, S.; Susman, S. Distribution of relaxation times in (KBr) 0.5 (KCN) 0.5. Phys. Rev. B 1984, 30, 2306. [Google Scholar] [CrossRef]
- Kamba, S.; Porokhonskyy, V.; Pashkin, A.; Bovtun, V.; Petzelt, J.; Nino, J.C.; Trolier-McKinstry, S.; Lanagan, M.T.; Randall, C.A. Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7 pyrochlore. Phys. Rev. B 2002, 66, 054106. [Google Scholar] [CrossRef]
- Kirillov, S.A. Markovian frequency modulation in liquids. Analytical description and comparison with the stretched exponential approach. Chem. Phys. Lett. 1993, 202, 459–463. [Google Scholar] [CrossRef]
- Kakalios, J.; Street, R.; Jackson, W. Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon. Phys. Rev. Lett. 1987, 59, 1037. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, W.G.; Perrot, M.; Guillaume, F. Vibrational dephasing under fractional (“stretched”) exponential modulation. Chem. Phys. Lett. 1986, 128, 591–594. [Google Scholar] [CrossRef]
- Rothschild, W.G.; Perrot, M.; Guillaume, F. On the vibrational T2 processes in partially ordered systems. J. Chem. Phys. 1987, 87, 7293–7299. [Google Scholar] [CrossRef]
- Burnstein, A. Motion-broadened and motion-narrowed spectra. Chem. Phys. Lett. 1981, 83, 335–340. [Google Scholar] [CrossRef]
- Kirillov, S.A.; Yannopoulos, S.N. Charge-current contribution to low-frequency Raman scattering from glass-forming ionic liquids. Phys. Rev. B 2000, 61, 11391. [Google Scholar] [CrossRef]
- Pick, R.; Aouadi, A.; Dreyfus, C.; Torre, R.; Bartolini, P. Light scattering studies of high-frequency relaxation processes in organic glass formers. J. Phys. Condens. Matter 1996, 8, 9593. [Google Scholar] [CrossRef]
- Karmwar, P.; Graeser, K.; Gordon, K.C.; Strachan, C.J.; Rades, T. Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods. Int. J. Pharm. 2011, 417, 94–100. [Google Scholar] [CrossRef]
- Kalampounias, A.; Yannopoulos, S.; Steffen, W.; Kirillova, L.; Kirillov, S. Short-time dynamics of glass-forming liquids: Phenyl salicylate (salol) in bulk liquid, dilute solution, and confining geometries. J. Chem. Phys. 2003, 118, 8340–8349. [Google Scholar] [CrossRef]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis; Springer: Berlin/Heidelberg, Germany, 1978; pp. 105–116. [Google Scholar]
- Amonette, J.E.; Joseph, S. Characteristics of biochar: Microchemical properties. In Biochar for Environmental Management; Routledge: London, UK, 2012; pp. 65–84. [Google Scholar]
- Xu, X.; Cao, X.; Zhao, L.; Zhou, H.; Luo, Q. Interaction of organic and inorganic fractions of biochar with Pb (II) ion: Further elucidation of mechanisms for Pb (II) removal by biochar. RSC Adv. 2014, 4, 44930–44937. [Google Scholar] [CrossRef]
- Manoj, B. Investigation of nanocrystalline structure in selected carbonaceous materials. Int. J. Miner. Met. Mater. 2014, 21, 940–946. [Google Scholar] [CrossRef]
- Takagi, H.; Maruyama, K.; Yoshizawa, N.; Yamada, Y.; Sato, Y. XRD analysis of carbon stacking structure in coal during heat treatment. Fuel 2004, 83, 2427–2433. [Google Scholar] [CrossRef]
- Li, Z.; Lu, C.; Xia, Z.; Zhou, Y.; Luo, Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 2007, 45, 1686–1695. [Google Scholar] [CrossRef]
- Manoj, B.; Kunjomana, A. Study of stacking structure of amorphous carbon by X-ray diffraction technique. Int. J. Electrochem. Sci. 2012, 7, 3127–3134. [Google Scholar]
- Gibson, J.; Holohan, M.; Riley, H. 87. Amorphous carbon. J. Chem. Soc. Resumed 1946, 0, 456–461. [Google Scholar] [CrossRef]
- Kumar, P.V.; Gupta, G.S. Study of formation of silicon carbide in the Acheson process. Steel Res. 2002, 73, 31–38. [Google Scholar] [CrossRef]
- Kurunov, I. Mechanism and theoretical evaluation of the replacement of coke by schungite in blast-furnace smelting. Izv. Vyssh. Uchebn. Zaved. Chern. Metall 2003, 7, 20–24. [Google Scholar]
- Li, X.; Chen, X.; Song, H. Synthesis of β-SiC nanostructures via the carbothermal reduction of resorcinol–formaldehyde/SiO2 hybrid aerogels. J. Mater. Sci. 2009, 44, 4661–4667. [Google Scholar] [CrossRef]
- Jeong, H.-K.; Noh, H.-J.; Kim, J.-Y.; Jin, M.; Park, C.; Lee, Y. X-ray absorption spectroscopy of graphite oxide. EPL Europhys. Lett. 2008, 82, 67004. [Google Scholar] [CrossRef] [Green Version]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Negri, F.; di Donato, E.; Tommasini, M.; Castiglioni, C.; Zerbi, G.; Müllen, K. Resonance Raman contribution to the D band of carbon materials: Modeling defects with quantum chemistry. J. Chem. Phys. 2004, 120, 11889–11900. [Google Scholar] [CrossRef] [PubMed]
- Tlili, M.; Amor, M.B.; Gabrielli, C.; Joiret, S.; Maurin, G.; Rousseau, P. Characterization of CaCO3 hydrates by micro-Raman spectroscopy. J. Raman Spectrosc. 2002, 33, 10–16. [Google Scholar] [CrossRef]
- Tonsuaadu, K.; Gross, K.A.; Plūduma, L.; Veiderma, M. A review on the thermal stability of calcium apatites. J. Therm. Anal. Calorim. 2012, 110, 647–659. [Google Scholar] [CrossRef]
- Shimodaira, N.; Masui, A. Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 2002, 92, 902–909. [Google Scholar] [CrossRef]
- Dillon, R.; Woollam, J.A.; Katkanant, V. Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B 1984, 29, 3482. [Google Scholar] [CrossRef]
- Padovano, E.; Giorcelli, M.; Bianchi, G.; Biamino, S.; Rovere, M.; Tagliaferro, A.; Ortona, A. Graphite-Si-SiC ceramics produced by microwave assisted reactive melt infiltration. J. Eur. Ceram. Soc. 2019, 39, 2232–2243. [Google Scholar] [CrossRef]
- Matthews, M.; Pimenta, M.; Dresselhaus, G.; Dresselhaus, M.; Endo, M. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 1999, 59, R6585–R6588. [Google Scholar] [CrossRef]
4 | Proximate Analysis [wt%] | Ultimate Analysis [%] | Specific Surface Area [m2/g] | |||||
---|---|---|---|---|---|---|---|---|
Moisture | Ash | VOCs | Fixed Carbon a | C | H | O b | ||
OSR 550 | 2.61 | 19.50 | 16.38 | 61.51 | 68.85 | 1.82 | 8.91 | 7.3 |
Element | Concentration [wt.%] | ||
---|---|---|---|
Site 1 | Site 2 | Site 3 | |
C | 86.79 | 90.67 | 34.45 |
O | 10.82 | 8.49 | 42.33 |
Mg | 0.10 | 0.05 | 0.29 |
Si | 0.33 | 0.15 | 0.41 |
P | 0.12 | 0.05 | 0.16 |
Cl | 0.10 | 0.03 | 1.88 |
K | 1.32 | 0.42 | 20.48 |
Ca | 0.42 | 0.13 | 34.45 |
Samples Label. | Treatment Temperature [°C] |
---|---|
OSR 550 | 550 a |
OSR 900 | 900 b |
OSR 1000 | 1000 b |
OSR 1100 | 1100 b |
OSR 1300 | 1300 b |
OSR 1500 | 1500 b |
OSR 2200 | 2200 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliaferro, A.; Rovere, M.; Padovano, E.; Bartoli, M.; Giorcelli, M. Introducing the Novel Mixed Gaussian-Lorentzian Lineshape in the Analysis of the Raman Signal of Biochar. Nanomaterials 2020, 10, 1748. https://doi.org/10.3390/nano10091748
Tagliaferro A, Rovere M, Padovano E, Bartoli M, Giorcelli M. Introducing the Novel Mixed Gaussian-Lorentzian Lineshape in the Analysis of the Raman Signal of Biochar. Nanomaterials. 2020; 10(9):1748. https://doi.org/10.3390/nano10091748
Chicago/Turabian StyleTagliaferro, Alberto, Massimo Rovere, Elisa Padovano, Mattia Bartoli, and Mauro Giorcelli. 2020. "Introducing the Novel Mixed Gaussian-Lorentzian Lineshape in the Analysis of the Raman Signal of Biochar" Nanomaterials 10, no. 9: 1748. https://doi.org/10.3390/nano10091748
APA StyleTagliaferro, A., Rovere, M., Padovano, E., Bartoli, M., & Giorcelli, M. (2020). Introducing the Novel Mixed Gaussian-Lorentzian Lineshape in the Analysis of the Raman Signal of Biochar. Nanomaterials, 10(9), 1748. https://doi.org/10.3390/nano10091748