Reinforcing Mechanisms of Graphene and Nano-TiC in Al2O3-Based Ceramic-Tool Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
3. Results
3.1. Effects of Graphene Content on Microstructure
3.2. Effects of Nano-TiC Content on Microstructure
3.3. Mechanical Properties
3.4. Reinforcing Mechanisms
4. Conclusions
- Graphene was well-dispersed and stable. However, too much graphene, which may cause some pores and weaken the “binding effect” of grains, had adverse effects on the mechanical properties. Meanwhile, PEG and ultrasonic dispersion were effective methods to disperse nano-TiC. By adding a little graphene and nano-TiC, the microstructure was much finer, which showed excellent compactness.
- The optimal mechanical properties were obtained. After we added 0.5 vol% graphene and 10 vol% nano-TiC, the flexural strength, fracture toughness, and Vickers hardness were 705 ± 44 MPa, 7.4 ± 0.4 MPa m1/2, and 20.5 ± 0.8 GPa, respectively.
- Graphene and nano-TiC synergistically induced some reinforcing mechanisms. The strong bonding interface induced by graphene caused crack bridging and graphene break, whereas the weak bonding interface caused crack guiding and pull-out of graphene. Nano-TiC also induced crack deflection and crack branching. Similarly, more pores could be found with the addition of more graphene and nano-TiC. Therefore, the appropriate amounts of graphene and nano-TiC were important for reinforcing Al2O3-based ceramic-tool materials.
Author Contributions
Funding
Conflicts of Interest
References
- Grzesik, W. Wear development on wiper Al2O3–TiC mixed ceramic tools in hard machining of high strength steel. Wear 2009, 266, 1021–1028. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Wan, T.; Yin, Z.; Wang, J. Mechanical properties and toughening mechanisms of graphene platelets reinforced Al2O3/TiC composite ceramic tool materials by microwave sintering. Mater. Sci. Eng. A 2017, 680, 190–196. [Google Scholar] [CrossRef]
- Bai, X.; Huang, C.; Wang, J.; Zou, B.; Liu, H. Fabrication and characterization of Si3N4 reinforced Al2O3-based ceramic tool materials. Ceram. Int. 2015, 41, 12798–12804. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J.; Shen, T. Effect of nano-metal particles on the fracture toughness of metal–ceramic composite. Mater. Des. 2013, 45, 67–71. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Shi, L.; Liang, J.; Hui, D.; Lau, K.T. Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics. Compos. Part B 2008, 39, 1136–1141. [Google Scholar] [CrossRef]
- Sun, X.; Han, W.; Liu, Q.; Hu, P.; Hong, C. ZrB2-ceramic toughened by refractory metal Nb prepared by hot-pressing. Mater. Des. 2010, 31, 4427–4431. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Zhang, X. Influence of the microstructure evolution of ZrO2 fiber on the fracture toughness of ZrB2–SiC nanocomposite ceramics. Mater. Des. 2013, 49, 808–813. [Google Scholar] [CrossRef]
- Pezzotti, G.; Müller, W.H. Strengthening mechanisms in Al2O3/SiC nanocomposites. Comput. Mater. Sci. 2001, 22, 155–168. [Google Scholar] [CrossRef]
- Jianxin, D.; Lili, L.; Jianhua, L.; Jinlong, Z.; Xuegeng, Y. Failure mechanisms of TiB2 particle and SiC whisker reinforced Al2O3 ceramic cutting tools when machining nickel-based alloys. Int. J. Mach. Tool Manuf. 2005, 45, 1393–1401. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, C.; Osendi, M.I. Toughening in ceramics containing graphene fillers. Ceram. Int. 2014, 40, 11187–11192. [Google Scholar] [CrossRef]
- Porwal, H.; Tatarko, P.; Grasso, S.; Khaliq, J.; Dlouhý, I.; Reece, M.J. Graphene reinforced alumina nano-composites. Carbon 2013, 64, 359–369. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Cui, E.; Liu, H.; Dong, Y.; Sun, Z. Effects of sintering parameters on microstructure, graphene structure stability and mechanical properties of graphene reinforced Al2O3-based composite ceramic tool material. Ceram. Int. 2019, 45, 23384–23392. [Google Scholar] [CrossRef]
- Cui, E.; Zhao, J.; Wang, X. Determination of microstructure and mechanical properties of graphene reinforced Al2O3-Ti(C,N) ceramic composites. Ceram. Int. 2019, 45, 20593–20599. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, X.; Yan, D. Synergistic strengthening and toughening of zircon ceramics by the additions of SiC whisker and 3Y-TZP simultaneously. J. Eur. Ceram. Soc. 1997, 17, 1003–1010. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Huang, C.; Wang, L.; Zou, B.; Zhao, B. Synergistically toughening effect of SiC whiskers and nanoparticles in Al2O3-based composite ceramic cutting tool material. Chin. J. Mech. Eng. 2016, 29, 977–982. [Google Scholar] [CrossRef]
- Smirnov, B.I.; Nikolaev, V.I.; Orlova, T.S.; Shpeizman, A.R.; López, A.R.A.; Goretta, K.C.; Singh, D.; Routbort, J.L. Mechanical properties and microstructure of an Al2O3-SiC-TiC composite. Mater. Sci. Eng. A 1998, 242, 292–295. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, H.; Huang, C.; Wang, J.; Cheng, M. Fabrication and mechanical properties of Al2O3-SiCw-TiCnp ceramic tool material. Ceram. Int. 2017, 43, 10224–10230. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Wu, J.; Shi, G.; Xu, H. Comparison of the homemade and commercial graphene in heightening mechanical properties of Al2O3 ceramic. Ceram. Int. 2017, 43, 2143–2149. [Google Scholar] [CrossRef]
- Meng, X.; Xu, C.; Xiao, G.; Yi, M.; Zhang, Y. Microstructure and anisotropy of mechanical properties of graphene nanoplate toughened Al2O3-based ceramic composites. Ceram. Int. 2016, 42, 16090–16095. [Google Scholar] [CrossRef] [Green Version]
- Madhan, M.; Prabhakaran, G. Microwave versus conventional sintering: Microstructure and mechanical properties of Al2O3–SiC ceramic composites. Bol. Soc. Esp. Ceram. Vidr. 2019, 58, 14–22. [Google Scholar] [CrossRef]
- Hao, J.; Bai, W.; Li, W.; Zhai, J. Correlation Between the Microstructure and Electrical Properties in High--Performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Lead-Free Piezoelectric Ceramics. J. Am. Ceram. Soc. 2012, 95, 1998–2006. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.Z.; Koratkar, N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano 2009, 3, 3884–3890. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wu, F.; Wu, H.; Chen, G. Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling. J. Nanomater. 2010, 2010, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wang, Y.; Fan, Z.; Yan, J.; Wei, T. Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull. 2011, 46, 315–318. [Google Scholar] [CrossRef]
- Balázsi, K.; Furkó, M.; Liao, Z.; Gluch, J.; Medved, D.; Sedlák, R.; Dusza, J.; Zschech, E.; Balázsi, C. Porous sandwich ceramic of layered silicon nitride-zirconia composite with various multilayered graphene content. J. Alloy Compd. 2020, 832, 154984. [Google Scholar] [CrossRef]
- Evans, A.G. Structural Reliability:A Processing--Dependent Phenomenon. J. Am. Ceram. Soc. 1982, 65, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Rice, R.W. Fracture Mechanics of Ceramics-Microstructural Dependence of Fracture Mechanics Parameters in Ceramics; Plenum: New York, NY, USA, 1978; pp. 849–876. [Google Scholar]
- Liu, J.; Yan, H.; Jiang, K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 2013, 39, 6215–6221. [Google Scholar] [CrossRef]
- Bódis, E.; Cora, I.; Balázsi, C.; Nemth, P.; Károly, Z.; Klébert, S.; Fazekas, P.; Keszler, A.M.; Szépvölgyi, J. Spark plasma sintering of graphene reinforced silicon carbide ceramics. Ceram. Int. 2017, 43, 9005–9011. [Google Scholar] [CrossRef] [Green Version]
- Cygan, T.; Wozniak, J.; Petrus, M.; Cieslak, B.A.; Kostecki, M.; Olsyna, A. The effect of microstructure evolution on mechanical properties in novel alumina-montmorillonite composites. Int. J. Refract. Metals Hard Mater. 2019, 80, 195–203. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Saheb, N.; Mohammad, K. Microstructure and mechanical properties of spark plasma sintered Al2O3-SiC-CNTs hybrid nanocomposites. Ceram. Int. 2016, 42, 12330–12340. [Google Scholar] [CrossRef]
- Dusza, J.; Morgiel, J.; Duszová, A.; Kvetková, L.; Nosko, M.; Kun, P.; Balázsi, C. Microstructure and fracture toughness of Si3N4/graphene platelet composites. J. Eur. Ceram. Soc. 2012, 32, 3389–3397. [Google Scholar] [CrossRef]
- Lee, B.; Koo, M.Y.; Jin, S.H.; Kim, K.T.; Hong, S.H. Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process. Carbon 2014, 78, 212–219. [Google Scholar] [CrossRef]
- Rao, R.; Podila, R.; Tsuchikawa, R.; Katoch, J.; Tishler, D.; Rao, A.M.; Ishigami, M. Effects of layer stacking on the combination raman modes in graphene. ACS Nano 2011, 5, 1594–1599. [Google Scholar] [CrossRef] [Green Version]
- Hansen, N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Nieto, A.; Huang, L.; Han, Y.H.; Schoenung, J.M. Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement. Ceram. Int. 2015, 41, 5926–5936. [Google Scholar] [CrossRef]
- Fan, J.P.; Zhuang, D.M.; Zhao, D.Q.; Zhang, G.; Wu, M.S. Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes. Appl. Phys. Lett. 2006, 89, 121910. [Google Scholar] [CrossRef]
- Shekhawat, A.; Ritchie, R.O. Toughness and strength of nanocrystalline graphene. Nat. Commun. 2016, 7, 10546. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.S.; Marotto, V.R.; Rafiee, M.A.; Koratkar, N.; Corral, E.L. Toughening in Graphene Ceramic Composites. ACS Nano 2011, 5, 3182–3190. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, X.; Zhou, Y. Processing and characterization of an Al2O3/WC/TiC micro-nano-composite ceramic tool material. Mater. Sci. Eng. A 2010, 527, 1844–1849. [Google Scholar] [CrossRef]
Composites | Micro-Al2O3 (0.5 µm) | Nano-Al2O3 (0.5 µm) | Nano-TiC (0.04 µm) | Graphene (0.5–5 µm) | MgO (0.5 µm) | Y2O3 (0.5 µm) | Ni (0.5 μm) | Mo (0.5 μm) |
---|---|---|---|---|---|---|---|---|
A | 58 | 10 | 30 | 0 | 0.5 | 0.5 | 0.5 | 0.5 |
B | 57.75 | 10 | 30 | 0.25 | 0.5 | 0.5 | 0.5 | 0.5 |
C | 57.5 | 10 | 30 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
D | 57.25 | 10 | 30 | 0.75 | 0.5 | 0.5 | 0.5 | 0.5 |
E | 57 | 10 | 30 | 1 | 0.5 | 0.5 | 0.5 | 0.5 |
F | 87.5 | 10 | 0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
G | 82.5 | 10 | 5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
H | 77.5 | 10 | 10 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
I | 67.5 | 10 | 20 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Composites | Flexural Strength (MPa) | Fracture Toughness (MPa m1/2) | Vickers Hardness (GPa) |
---|---|---|---|
A | 435 ± 45 | 5.8 ± 0.3 | 15.2 ± 1.5 |
B | 463 ± 23 | 6.5 ± 0.6 | 14.3 ± 1.7 |
C | 480 ± 58 | 5.7 ± 0.2 | 14.8 ± 0.6 |
D | 420 ± 26 | 5.4 ± 0.4 | 14.6 ± 1.0 |
E | 397 ± 32 | 5.0 ± 0.6 | 13.2 ± 0.8 |
F | 540 ± 43 | 6.4 ± 0.8 | 16.5 ± 1.9 |
G | 607 ± 63 | 7.1 ± 0.3 | 19.9 ± 0.5 |
H | 705 ± 44 | 7.4 ± 0.4 | 20.5 ± 0.8 |
I | 554 ± 37 | 6.3 ± 0.3 | 15.7 ± 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Zhao, J.; Wang, X.; Cui, E.; Yu, H. Reinforcing Mechanisms of Graphene and Nano-TiC in Al2O3-Based Ceramic-Tool Materials. Nanomaterials 2020, 10, 1815. https://doi.org/10.3390/nano10091815
Sun Z, Zhao J, Wang X, Cui E, Yu H. Reinforcing Mechanisms of Graphene and Nano-TiC in Al2O3-Based Ceramic-Tool Materials. Nanomaterials. 2020; 10(9):1815. https://doi.org/10.3390/nano10091815
Chicago/Turabian StyleSun, Zhefei, Jun Zhao, Xuchao Wang, Enzhao Cui, and Hao Yu. 2020. "Reinforcing Mechanisms of Graphene and Nano-TiC in Al2O3-Based Ceramic-Tool Materials" Nanomaterials 10, no. 9: 1815. https://doi.org/10.3390/nano10091815
APA StyleSun, Z., Zhao, J., Wang, X., Cui, E., & Yu, H. (2020). Reinforcing Mechanisms of Graphene and Nano-TiC in Al2O3-Based Ceramic-Tool Materials. Nanomaterials, 10(9), 1815. https://doi.org/10.3390/nano10091815