Printed and Flexible Microheaters Based on Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Fabrication Process
2.2. Characterization
3. Results
3.1. Heater with One Printed CNT Layer
3.2. Heater with Two Printed CNT Layers
3.3. Comparison with Other Microheaters in the Literature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Streit, P.; Nestler, J.; Schulze, R.; Shaporin, A.; Otto, T. Investigation on the temperature distribution of integrated heater configurations in a Lab-on-a-Chip system. In Proceedings of the Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Dresden, Germany, 3–5 April 2017; pp. 1–8. [Google Scholar]
- Biscotti, A.; Lazzarini, R.; Virgilli, G.; Ngatcha, F.; Valisi, A.; Rossi, M. Optimizing a portable biosensor system for bacterial detection in milk based mix for ice cream. Sens. Bio-Sens. Res. 2018, 18, 1–6. [Google Scholar] [CrossRef]
- Catto, A.C.; Silva, L.F.; Bernardi, M.I.B.; Bernardini, S.; Aguir, K.; Longo, E.; Mastelaro, V.R. Local Structure and Surface Properties of Co x Zn1–x O Thin Films for Ozone Gas Sensing. ACS Appl. Mater. Interfaces 2016, 8, 26066–26072. [Google Scholar] [CrossRef] [PubMed]
- Abdelhalim, A.; Winkler, M.; Loghin, F.; Zeiser, C.; Lugli, P.; Abdellah, A. Highly sensitive and selective carbon nanotube-based gas sensor arrays functionalized with different metallic nanoparticles. Sens. Actuators B Chem. 2015, 220, 1288–1296. [Google Scholar] [CrossRef]
- Suganuma, K. Introduction to Printed Electronics; Springer Science & Business Media: Berlin, Germany, 2014; Volume 74. [Google Scholar]
- Rivadeneyra, A.; Loghin, F.C.; Falco, A. Technological Integration in Printed Electronics. In Flexible Electronics; IntechOpen: London, UK, 2018. [Google Scholar]
- Molina-Lopez, F.; Quintero, A.V.; Mattana, G.; Briand, D.; de Rooij, N. Large-area compatible fabrication and encapsulation of inkjet-printed humidity sensors on flexible foils with integrated thermal compensation. J. Micromech. Microeng. 2013, 23, 025012. [Google Scholar] [CrossRef]
- Danesh, E.; Molina-Lopez, F.; Camara, M.; Bontempi, A.; Quintero, A.V.; Teyssieux, D.; Thiery, L.; Briand, D.; De Rooij, N.F.; Persaud, K.C. Development of a new generation of ammonia sensors on printed polymeric hotplates. Anal. Chem. 2014, 86, 8951–8958. [Google Scholar] [CrossRef]
- Briand, D.; Molina-Lopez, F.; Quintero, A.V.; Ataman, C.; Courbat, J.; de Rooij, N.F. Why Going Towards Plastic and Flexible Sensors? Procedia Eng. 2011, 25, 8–15. [Google Scholar] [CrossRef]
- Calata, J.N.; Lu, G.-Q.; Ngo, K.; Nguyen, L. Electromigration in sintered nanoscale silver films at elevated temperature. J. Electron. Mater. 2014, 43, 109–116. [Google Scholar] [CrossRef]
- Camara, M.; Breuil, P.; Pijolat, C.; Viricelle, J.-P.; de Rooij, N.F.; Briand, D. Tubular gas preconcentrators based on inkjet printed micro-hotplates on foil. Sens. Actuators B Chem. 2016, 236, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Nguyen, T.; Lubej, M.; Thiery, L.; Vairac, P.; Briand, D. Low-power printed micro-hotplates through aerosol jetting of gold on thin polyimide membranes. Microelectron. Eng. 2018, 194, 71–78. [Google Scholar] [CrossRef]
- Bobinger, M.; Angeli, D.; Colasanti, S.; La Torraca, P.; Larcher, L.; Lugli, P. Infrared, transient thermal, and electrical properties of silver nanowire thin films for transparent heaters and energy-efficient coatings. Phys. Status Solidi A 2017, 214, 1600466. [Google Scholar] [CrossRef]
- Bobinger, M.; Mock, J.; La Torraca, P.; Becherer, M.; Lugli, P.; Larcher, L. Tailoring the Aqueous Synthesis and Deposition of Copper Nanowires for Transparent Electrodes and Heaters. Adv. Mater. Interfaces 2017, 4, 1700568. [Google Scholar] [CrossRef]
- Cagatay, E.; Falco, A.; Abdellah, A.; Lugli, P. Carbon nanotube based temperature sensors fabricated by large-scale spray deposition. In Proceedings of the 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Grenoble, France, 30 June–3 July 2014; pp. 1–4. [Google Scholar]
- Colasanti, S.; Robbiano, V.; Loghin, F.C.; Abdelhalim, A.; Bhatt, V.D.; Abdellah, A.; Cacialli, F.; Lugli, P. Experimental and computational study on the temperature behavior of CNT networks. IEEE Trans. Nanotechnol. 2016, 15, 171–178. [Google Scholar] [CrossRef]
- Sharma, S.; Hussain, S.; Singh, S.; Islam, S. MWCNT-conducting polymer composite based ammonia gas sensors: A new approach for complete recovery process. Sens. Actuators B Chem. 2014, 194, 213–219. [Google Scholar] [CrossRef]
- Young, S.-J.; Lin, Z.-D. Sensing Performance of Carbon Dioxide Gas Sensors with Carbon Nanotubes on Plastic Substrate. Ecs J. Solid State Sci. Technol. 2017, 6, M72–M74. [Google Scholar] [CrossRef]
- Falco, A.; Rivadeneyra, A.; Loghin, F.C.; Salmerón, J.F.; Lugli, P.; Abdelhalim, A. Towards Low-Power Electronics: Self-Recovering and Flexible Gas Sensors. J. Mater. Chem. A 2018, 6, 7107–7113. [Google Scholar] [CrossRef]
- Ilanchezhiyan, P.; Zakirov, A.; Kumar, G.M.; Yuldashev, S.U.; Cho, H.; Kang, T.; Mamadalimov, A. Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. Rsc Adv. 2015, 5, 10697–10702. [Google Scholar] [CrossRef]
- Zhou, B.; Han, X.; Li, L.; Feng, Y.; Fang, T.; Zheng, G.; Wang, B.; Dai, K.; Liu, C.; Shen, C. Ultrathin, flexible transparent Joule heater with fast response time based on single-walled carbon nanotubes/poly (vinyl alcohol) film. Compos. Sci. Technol. 2019, 183, 107796. [Google Scholar] [CrossRef]
- Sadi, M.S.; Yang, M.; Luo, L.; Cheng, D.; Cai, G.; Wang, X. Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing. Cellulose 2019, 26, 6179–6188. [Google Scholar] [CrossRef]
- Shimoni, A.; Azoubel, S.; Magdassi, S. Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by “coffee ring effect”. Nanoscale 2014, 6, 11084–11089. [Google Scholar] [CrossRef]
- Albrecht, A.; Rivadeneyra, A.; Abdellah, A.; Lugli, P.; Salmerón, J.F. Inkjet printing and photonic sintering of silver and copper oxide nanoparticles for ultra-low-cost conductive patterns. J. Mater. Chem. C 2016, 4, 3546–3554. [Google Scholar] [CrossRef]
- Falco, A.; Cinà, L.; Scarpa, G.; Lugli, P.; Abdellah, A. Fully-sprayed and flexible organic photodiodes with transparent carbon nanotube electrodes. ACS Appl. Mater. Interfaces 2014, 6, 10593–10601. [Google Scholar] [CrossRef]
- Ji, S.; He, W.; Wang, K.; Ran, Y.; Ye, C. Thermal response of transparent silver nanowire/PEDOT: PSS film heaters. Small 2014, 10, 4951–4960. [Google Scholar] [CrossRef] [PubMed]
- Loghin, F.C.; Falco, A.; Salmeron, J.F.; Lugli, P.; Abdellah, A.; Rivadeneyra, A. Fully transparent gas sensor based on Carbon Nanotubes. Sensors 2019, 19, 4591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Tao, K.; Miao, J.; Norford, L.K. Improved selectivity and sensitivity of gas sensing using a 3D reduced graphene oxide hydrogel with an integrated microheater. ACS Appl. Mater. Interfaces 2015, 7, 27502–27510. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Kim, H.; Kim, K.S.; Lee, S.-K.; Bae, S.; Ahn, J.-H.; Kim, Y.-J.; Choi, J.-B.; Hong, B.H. High-performance graphene-based transparent flexible heaters. Nano Lett. 2011, 11, 5154–5158. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.; Kim, D.; Lee, K.H.; Overzet, L.J.; Lee, G.S. Transparent film heaters using multi-walled carbon nanotube sheets. Sens. Actuators A Phys. 2013, 199, 176–180. [Google Scholar] [CrossRef]
- Liu, P.; Liu, L.; Jiang, K.; Fan, S. Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays. Small 2011, 7, 732–736. [Google Scholar] [CrossRef] [PubMed]
Parameters | Cycle #1 | Cycle #2 |
---|---|---|
Max temperature (°C) | 79.49 | 76.70 |
Min temperature (°C) | 27.64 | 28.03 |
Min resistance (Ω) | 1679.6 | 1721.9 |
Max resistance (Ω) | 2758.1 | 2876.9 |
Voltage (V) | 21 | 21 |
Power density (mW mm−2) | 82.05 | 80.04 |
FoM (°C mm2 mW−1) | 0.97 | 0.96 |
Parameters | Cycle #1 | Cycle #2 | Cycle #3 | Cycle #4 |
---|---|---|---|---|
Max temperature (°C) | 65.04 | 71.51 | 79.56 | 89.12 |
Min temperature (°C) | 27.99 | 27.74 | 27.48 | 27.59 |
Min resistance (Ω) | 1940.4 | 1895.5 | 1850.2 | 1789.5 |
Max resistance (Ω) | 3088.9 | 3096.1 | 3127.8 | 3662.2 |
Voltage (V) | 20 | 21 | 22 | 25 |
Power density (mW mm−2) | 64.42 | 72.70 | 81.75 | 109.14 |
FoM (°C mm2 mW−1) | 1 | 0.98 | 0.97 | 0.82 |
Reference | Materials | Fabrication Process | Area (mm2) | Max. Operating Temperature (°C) | Max. Power (mW) | FoM (°C mm2mW−1) |
---|---|---|---|---|---|---|
Wu et al. [28] | RGOH-Pt on Si/SiO2 | Photolithography | 1 | 140 | 192 | 0.73 |
Khan et al. [29] | Graphene on boron nitride (h-BN) sheets | CVD | 0.096 | 200 | 39 | 0.5 |
Ilanchezhiyan et al. [20] | CNT on cotton fabrics | Dip Coating | - | 52 | 320 | 7.69 |
Jung et al. [30] | MWCNT on glass | CVD | 0.02 | 100 | 9600 | 0.2·10−3 |
Liu et al. [31] | CNTs on PET | CVD | 4 | 100 | 120 | 3.33 |
Khan et al. [12] | AuNPs on polyimide | Aerosol printing | 0.25 | 250 | 39 | 1.6 |
This work | SWCNT and AgNPs on PET | Inkjet printing | 3.2 | 80 ± 10@22 V (one layer) 71.5 ± [email protected] V (two layers) | 260 ± 50@22 V (one layer) 150 ± [email protected] V (two layers) | 0.98 1.53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falco, A.; Romero, F.J.; Loghin, F.C.; Lyuleeva, A.; Becherer, M.; Lugli, P.; Morales, D.P.; Rodriguez, N.; Salmerón, J.F.; Rivadeneyra, A. Printed and Flexible Microheaters Based on Carbon Nanotubes. Nanomaterials 2020, 10, 1879. https://doi.org/10.3390/nano10091879
Falco A, Romero FJ, Loghin FC, Lyuleeva A, Becherer M, Lugli P, Morales DP, Rodriguez N, Salmerón JF, Rivadeneyra A. Printed and Flexible Microheaters Based on Carbon Nanotubes. Nanomaterials. 2020; 10(9):1879. https://doi.org/10.3390/nano10091879
Chicago/Turabian StyleFalco, Aniello, Francisco J. Romero, Florin C. Loghin, Alina Lyuleeva, Markus Becherer, Paolo Lugli, Diego P. Morales, Noel Rodriguez, Jose F. Salmerón, and Almudena Rivadeneyra. 2020. "Printed and Flexible Microheaters Based on Carbon Nanotubes" Nanomaterials 10, no. 9: 1879. https://doi.org/10.3390/nano10091879
APA StyleFalco, A., Romero, F. J., Loghin, F. C., Lyuleeva, A., Becherer, M., Lugli, P., Morales, D. P., Rodriguez, N., Salmerón, J. F., & Rivadeneyra, A. (2020). Printed and Flexible Microheaters Based on Carbon Nanotubes. Nanomaterials, 10(9), 1879. https://doi.org/10.3390/nano10091879