Synthesis of the ZnTiO3/TiO2 Nanocomposite Supported in Ecuadorian Clays for the Adsorption and Photocatalytic Removal of Methylene Blue Dye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Clay Purification
2.3. Synthesis of the ZnTiO3/TiO2-Clay Composite
2.4. Preparation of the Supported Photocatalysts
2.5. Characterization
2.6. Adsorption and Photocatalytic Degradation
2.7. Reuse of the Supported Photocatalysts
3. Results
3.1. Characterization of the Samples
3.1.1. XRD Analysis
3.1.2. SEM-EDX Analysis
3.1.3. Optical and Photoelectric Properties
3.1.4. XRF Analysis
3.2. Adsorption and Photocatalytic Degradation
3.3. Reuse of the Supported Photocatalysts
4. Discussion
4.1. Synthesis and Characterization of the TiO2/ZnTiO3-Clay Composite
4.2. Adsorption and Photocatalytic Degradation
4.3. Reuse of the Supported Photocatalysts
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anandan, S.; Ponnusamy, V.K.; AshokKumar, M. A review on hybrid techniques for the degradation of organic pollutants in aqueous environment. Ultrason. Sonochem. 2020, 67, 105130. [Google Scholar] [CrossRef] [PubMed]
- Shwan, D.M.S.; Aziz, B.K.; Kaufhold, S. High adsorption efficiency of topkhana natural clay for methylene blue from medical laboratory wastewater: A linear and nonlinear regression. Silicon 2019, 12, 87–99. [Google Scholar]
- Omer, O.S.; Hussein, M.A.; Hussein, B.H.; Mgaidi, A. Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K. Arab. J. Chem. 2018, 11, 615–623. [Google Scholar] [CrossRef]
- Kang, S.; Qin, L.; Zhao, Y.; Wang, W.; Zhang, T.; Yang, L.; Rao, F.; Song, S.; Lei, Q. Enhanced removal of methyl orange on exfoliated montmorillonite/chitosan gel in presence of methylene blue. Chemosphere 2019, 238, 124693. [Google Scholar] [CrossRef]
- Lu, F.; Astruc, D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev. 2020, 408, 213180. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W. State of the art and sustainability of natural coagulants in water and wastewater treatment. J. Clean. Prod. 2020, 262, 121267. [Google Scholar] [CrossRef]
- Jun, B.-M.; Al-Hamadani, Y.A.; Son, A.; Park, C.M.; Jang, M.; Jang, A.; Kim, N.C.; Yoon, Y. Applications of metal-organic framework based membranes in water purification: A review. Sep. Purif. Technol. 2020, 247, 116947. [Google Scholar] [CrossRef]
- Chen, M.; Jafvert, C.T.; Wu, Y.; Cao, X.; Hankins, N.P. Inorganic anion removal using micellar enhanced ultrafiltration (MEUF), modeling anion distribution and suggested improvements of MEUF: A review. Chem. Eng. J. 2020, 398, 125413. [Google Scholar] [CrossRef]
- Pan, L.; Ai, M.; Huang, C.; Yin, L.; Liu, X.; Zhang, R.; Wang, S.; Jiang, Z.; Zhang, X.; Zou, J.-J.; et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. Historical development and prospects of photocatalysts for pollutant removal in water. J. Hazard. Mater. 2020, 395, 122599. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Tran, M.D.; Van Hoang, T.; Trinh, D.T.; Pham, D.T.; Nguyen, D.L. Experimental and numerical study on photocatalytic activity of the ZnO nanorods/CuO composite film. Sci. Rep. 2020, 10, 7792. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-Mayouf, A.M.; Karuppuchamy, S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloy. Compd. 2020, 828, 154281. [Google Scholar] [CrossRef]
- Sánchez-Tovar, R.; Blasco-Tamarit, E.; Fernández-Domene, R.; Villanueva-Pascual, M.; García-Antón, J.M. Electrochemical formation of novel TiO2-ZnO hybrid nanostructures for photoelectrochemical water splitting applications. Surf. Coat. Technol. 2020, 388, 125605. [Google Scholar] [CrossRef]
- Al-Mamun, M.; Kader, S.; Islam, S.; Khan, M. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, K.; Thakur, N.; Chauhan, S. The effect of shape and size of ZnO nanoparticles on their antimicrobial and photocatalytic activities: A green approach. Bull. Mater. Sci. 2019, 43, 20. [Google Scholar] [CrossRef]
- Ramgir, N.; Bhusari, R.; Rawat, N.S.; Patil, S.J.; Debnath, A.K.; Gadkari, S.C.; Muthe, K.P. TiO2/ZnO heterostructure nanowire based NO2 sensor. Mater. Sci. Semicond. Process. 2020, 106, 104770. [Google Scholar] [CrossRef]
- Gnanaseelan, N.; Latha, M.; Mantilla, A.; Sathish-Kumar, K.; Caballero-Briones, F. The role of redox states and junctions in photocatalytic hydrogen generation of MoS2-TiO2-rGO and CeO2-Ce2Ti3O8.7-TiO2-rGO composites. Mater. Sci. Semicond. Process. 2020, 118, 105185. [Google Scholar] [CrossRef]
- Zalani, N.M.; Kaleji, B.K.; Mazinani, B. Synthesis and characterisation of the mesoporous ZnO-TiO2 nanocomposite; Taguchi optimisation and photocatalytic methylene blue degradation under visible light. Mater. Technol. 2019, 35, 281–289. [Google Scholar] [CrossRef]
- Jose, M.; Elakiya, M.; Dhas, S.A.M.B. Structural and optical properties of nanosized ZnO/ZnTiO3 composite materials synthesized by a facile hydrothermal technique. J. Mater. Sci. Mater. Electron. 2017, 28, 13649–13658. [Google Scholar] [CrossRef]
- Chen, F.; Yu, C.; Wei, L.; Fan, Q.; Ma, F.; Zeng, J.; Yi, J.; Yang, K.; Ji, H. Fabrication and characterization of ZnTiO3/Zn2Ti3O8/ZnO ternary photocatalyst for synergetic removal of aqueous organic pollutants and Cr(VI) ions. Sci. Total Environ. 2020, 706, 136026. [Google Scholar] [CrossRef]
- Al-Hajji, L. A comparative study on the zinc metatitanate microstructure by ball milling and solvothermal approaches. J. Struct. Chem. 2019, 60, 830–837. [Google Scholar] [CrossRef]
- Baamran, K.S.; Tahir, M. Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming. Energy Convers. Manag. 2019, 200, 112064. [Google Scholar] [CrossRef]
- Chuaicham, C.; Karthikeyan, S.; Song, J.T.; Ishihara, T.; Ohtani, B.; Sasaki, K. Importance of ZnTiO3 phase in ZnTi-mixed metal oxide photocatalysts derived from layered double hydroxide. ACS Appl. Mater. Interfaces 2020, 12, 9169–9180. [Google Scholar] [CrossRef] [PubMed]
- Surynek, M.; Spanhel, L.; Lapčík, Ľ.; Mrazek, J. Tuning the photocatalytic properties of sol-gel-derived single, coupled, and alloyed ZnO-TiO2 nanoparticles. Res. Chem. Intermed. 2019, 45, 4193–4204. [Google Scholar] [CrossRef]
- Müllerová, J.; Šutta, P.; Medlín, R.; Netrvalova, M.; Novak, P. Optical properties of zinc titanate perovskite prepared by reactive RF sputtering. J. Electr. Eng. 2017, 68, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Surendar, T.; Kumar, S.; Shanker, V. Influence of La-doping on phase transformation and photocatalytic properties of ZnTiO3 nanoparticles synthesized via modified sol-gel method. Phys. Chem. Chem. Phys. 2014, 16, 728–735. [Google Scholar] [CrossRef]
- Acosta-Silva, Y.; Castanedo-Perez, R.; Torres-Delgado, G.; Méndez-López, A.; Zelaya-Ángel, O. Analysis of the photocatalytic activity of CdS+ZnTiO3 nanocomposite films prepared by sputtering process. Superlattices Microstruct. 2016, 100, 148–157. [Google Scholar] [CrossRef]
- Bhagwat, U.O.; Wu, J.J.; Asiri, A.M.; Anandan, S. Synthesis of ZnTiO3@TiO2 heterostructure nanomaterial as a visible light photocatalyst. Chem. Sel. 2019, 4, 6106–6112. [Google Scholar]
- Sarkar, M.; Sarkar, S.; Biswas, A.; De, S.; Kumar, P.R.; Mothi, E.; Kathiravan, A. Zinc titanate nanomaterials—Photocatalytic studies and sensitization of hydantoin derivatized porphyrin dye. NanoStruct. NanoObjects 2020, 21, 100412. [Google Scholar] [CrossRef]
- Hadjltaief, H.B.; Ben Ameur, S.; Da Costa, P.; Ben Zina, M.; Galvez, M.E. Photocatalytic decolorization of cationic and anionic dyes over ZnO nanoparticle immobilized on natural Tunisian clay. Appl. Clay Sci. 2018, 152, 148–157. [Google Scholar] [CrossRef]
- Tobajas, M.; Belver, C.; Rodriguez, J.J. Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO / clay nanoarchitectures. Chem. Eng. J. 2016, 309, 596–606. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J.; Rodriguez, J.J. Environmental Titania—Clay heterostructures with solar photocatalytic applications. Appl. Catal. B Environ. 2015, 176, 278–287. [Google Scholar] [CrossRef]
- Wadhwa, S.; Mathur, A.; Pendurthi, R.; Singhal, U.; Khanuja, M.; Roy, S.S. Titania-based porous nanocomposites for potential environmental applications. Bull. Mater. Sci. 2020, 43, 47. [Google Scholar] [CrossRef]
- Jing, G.; Sun, Z.; Ye, P.; Wei, S.; Liang, Y. Clays for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: A review. Water Pr. Technol. 2017, 12, 432–443. [Google Scholar] [CrossRef]
- Akkari, M.; Aranda, P.; Ben Rhaiem, H.; Amara, A.B.H.; Ruiz-Hitzky, E. ZnO/clay nanoarchitectures: Synthesis, characterization and evaluation as photocatalysts. Appl. Clay Sci. 2016, 131, 131–139. [Google Scholar] [CrossRef]
- Wu, A.; Wang, D.; Wei, C.; Zhang, X.; Liu, Z.; Feng, P.; Ou, X.; Qiang, Y.; Garcia, H.; Niu, J.N. A comparative photocatalytic study of TiO2 loaded on three natural clays with different morphologies. Appl. Clay Sci. 2019, 183, 105352. [Google Scholar] [CrossRef]
- Krupskaya, V.V.; Zakusin, S.; Tyupina, E.A.; Dorzhieva, O.; Zhukhlistov, A.P.; Belousov, P.; Timofeeva, M.N. Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions. Minerals 2017, 7, 49. [Google Scholar] [CrossRef]
- Nolan, N.T.; Seery, M.K.; Pillai, S.C. Crystallization and phase-transition characteristics of sol-gel-synthesized zinc titanates. Chem. Mater. 2011, 23, 1496–1504. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Soofivand, F.; Sobhani-Nasab, A.; Shakouri-Arani, M.; Faal, A.Y.; Bagheri, S. Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application. Adv. Powder Technol. 2016, 27, 2066–2075. [Google Scholar] [CrossRef] [Green Version]
- Alkaykh, S.; Mbarek, A.; Ali-Shattle, E.E. Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 2020, 6, 4–9. [Google Scholar] [CrossRef]
- Ke, S.; Cheng, X.; Wang, Q.; Wang, Y.; Pan, Z. Preparation of a photocatalytic TiO2/ZnTiO3 coating on glazed ceramic tiles. Ceram. Int. 2014, 40, 8891–8895. [Google Scholar] [CrossRef]
- Mehrabi, M.; Javanbakht, V. Photocatalytic degradation of cationic and anionic dyes by a novel nanophotocatalyst of TiO2/ZnTiO3/αFe2O3 by ultraviolet light irradiation. J. Mater. Sci. Mater. Electron. 2018, 29, 9908–9919. [Google Scholar] [CrossRef]
- García-Ramírez, E.; Mondragón, M.; Zelaya-Ángel, O. Band gap coupling in photocatalytic activity in ZnO-TiO2 thin films. Appl. Phys. A 2012, 108, 291–297. [Google Scholar] [CrossRef]
- Lei, S.; Fan, H.; Ren, X.; Fang, J.; Ma, L.; Liu, Z. Novel sintering and band gap engineering of ZnTiO3 ceramics with excellent microwave dielectric properties. J. Mater. Chem. C 2017, 5, 4040–4047. [Google Scholar] [CrossRef]
- Li, X.; Xiong, J.; Huang, J.; Feng, Z.; Luo, J. Novel g-C3N4/h′ZnTiO3-a′TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity. J. Alloys Compd. 2019, 774, 768–778. [Google Scholar] [CrossRef]
- Wang, C.-L.; Hwang, W.-S.; Chang, K.-M.; Kuo, Y.-H.; Hsi, C.-S.; Huang, H.-H.; Wang, M.-C. Formation and morphology of Zn2Ti3O8 powders using hydrothermal process without dispersant agent or mineralizer. Int. J. Mol. Sci. 2011, 12, 935–945. [Google Scholar] [CrossRef] [Green Version]
- Thein, M.T.; Pung, S.-Y.; Aziz, A.; Itoh, M. The role of ammonia hydroxide in the formation of ZnO hexagonal nanodisks using sol–gel technique and their photocatalytic study. J. Exp. Nanosci. 2014, 10, 1068–1081. [Google Scholar] [CrossRef] [Green Version]
- Budigi, L.; Nasina, M.R.; Shaik, K.; Amaravadi, S. Structural and optical properties of zinc titanates synthesized by precipitation method. J. Chem. Sci. 2015, 127, 509–518. [Google Scholar] [CrossRef]
- Li, J.; Wu, N. Catalysis Science & Technology. Catal. Sci. Technol. 2015, 5, 1360–1384. [Google Scholar]
- Meshram, S.; Limaye, R.; Ghodke, S.; Nigam, S.; Sonawane, S.; Chikate, R. Continuous flow photocatalytic reactor using ZnO—Bentonite nanocomposite for degradation of phenol. Chem. Eng. J. 2011, 172, 1008–1015. [Google Scholar] [CrossRef]
- Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2011, 112, 1555–1614. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Xu, M.; Zhou, K.; Meng, Y.; Chen, H.; Guo, Y.; Wu, T. Photocatalytic degradation of methylene blue over layered double hydroxides using various divalent metal ions. Clays Clay Miner. 2019, 67, 340–347. [Google Scholar] [CrossRef]
- Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V. Synthesis of the graphene-ZnTiO3 nanocomposite for solar light assisted photodegradation of methylene blue. J. Phys. D Appl. Phys. 2015, 48, 415305. [Google Scholar] [CrossRef]
- Ozturk, B.; Pozan, G.S. Promoting role of transition metal oxide on ZnTiO3-TiO2 nanocomposites for the photocatalytic activity under solar light irradiation. Ceram. Int. 2016, 42, 11184–11192. [Google Scholar] [CrossRef]
- Wu, L.; Wu, P.; Zhu, Y.; Zhu, N.; Dang, Z. Preparation and characterization of ZnTiO3-TiO2/pillared montmorillonite composite catalyst for enhanced photocatalytic activity. Res. Chem. Intermed. 2016, 42, 5253–5268. [Google Scholar] [CrossRef]
- Wang, A.-M.; Bai, N.; Wang, J.-X.; Fan, X.-Y.; Kang, Y.-H.; Ma, X.-R. Preparation and photocatalytic property of ZnTiO3/TiO2 heterogeneous composite material. Rengong Jingti Xuebao/J. Synth. Cryst. 2018, 47, 382–388. [Google Scholar]
- Zang, W.-H.; Ji, Q.-H.; Lan, H.-C.; Li, J. Preparation of ZnTiO3/TiO2 photocatalyst and its mechanism on photocatalytic degradation of organic pollutants. Huanjing Kexue/Environ. Sci. 2019, 40, 693–700. [Google Scholar]
- El Mouzdahir, Y.; Elmchaouri, A.; Mahboub, R.; Gil, A.; Korili, S.A. Adsorption of methylene blue from aqueous solutions on a Moroccan clay. J. Chem. Eng. Data 2007, 52, 1621–1625. [Google Scholar] [CrossRef]
- Almeida, C.; Debacher, N.A.; Downs, A.; Cottet, L.; Mello, C. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interface Sci. 2009, 332, 46–53. [Google Scholar] [CrossRef]
- Aguiar, J.E.; Cecilia, J.A.; Tavares, P.A.S.; Azevedo, D.C.S.; Rodríguez Castellón, E.; Lucena, S.M.P.; Silva Junior, I.J. Applied clay science adsorption study of reactive dyes onto porous clay heterostructures. Appl. Clay Sci. 2017, 135, 35–44. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Aranda, P.; Akkari, M.; Khaorapapong, N.; Ogawa, M. Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles. Beilstein J. Nanotechnol. 2019, 10, 1140–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Hu, L.; Zhang, H.; Yu, L.; Liang, Y. Large-sized nano-TiO2/SiO2 mesoporous nanofilmconstructed macroporous photocatalysts with excellent photocatalytic performance. Front. Mater. Sci. 2020, 14, 163–176. [Google Scholar] [CrossRef]
- Susana, S.; Vercelone, Z.; Sham, E.L.; Mónica, E.; Torres, F. Caracterización superficial y textural de organoarcillas pilareadas con TiO2 Surface and textural characterization of TiO2 pillared organoclays. Rev. Mater. 2015, 20, 757–763. [Google Scholar]
- Bentahar, Y.; Draoui, K.; Hurel, C.; Ajouyed, O.; Khairoun, S.; Marmier, N. Physico-chemical characterization and valorization of swelling and non-swelling Moroccan clays in basic dye removal from aqueous solutions. J. Afr. Earth Sci. 2019, 154, 80–88. [Google Scholar] [CrossRef]
- Carrillo, A.M.; Urruchurto, C.M.; Carriazo, J.G.; Moreno, S.; Molina, R.A. Structural and textural characterization of a Colombian halloysite. Rev. Mex. Ing. Quim. 2014, 3, 563–571. [Google Scholar]
- Laysandra, L.; Sari, M.W.M.K.; Soetaredjo, F.E.; Foe, K.; Putro, J.N.; Kurniawan, A.; Ju, Y.-H.; Ismadji, S. Adsorption and photocatalytic performance of bentonite-titanium dioxide composites for methylene blue and rhodamine B decoloration. Heliyon 2018, 3, e00488. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xiang, Z.; Wang, D.; Kang, J.; Qi, H. Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO2 hydrogels. RSC Adv. 2020, 10, 23936–23943. [Google Scholar] [CrossRef]
- Irani, M.; Mohammadi, T.; Mohebbi, S. Photocatalytic degradation of methylene blue with ZnO nanoparticles; a joint experimental and theoretical study. J. Mex. Chem. Soc. 2017, 60, 218–225. [Google Scholar] [CrossRef]
- Kurajica, S.; Minga, I.; Blazic, R.; Muzina, K.; Tominac, P. Adsorption and degradation kinetics of methylene blue on as-prepared and calcined titanate nanotubes. Athens J. Sci. 2018, 5, 7–22. [Google Scholar] [CrossRef]
- Makama, A.B.; Salmiaton, A.; Saion, E.B.; Choong, T.S.Y.; Abdullah, N. Synthesis of CdS sensitized TiO2 photocatalysts: Methylene blue adsorption and enhanced photocatalytic activities. Int. J. Photoenergy 2016, 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; El Saliby, I.; McDonagh, A.; Chekli, L.; Tijing, L.D.; Kim, J.-H.; Shon, H.K. Adsorption and photocatalytic degradation of methylene blue using potassium polytitanate and solar simulator. J. Nanosci. Nanotechnol. 2016, 16, 4342–4349. [Google Scholar] [CrossRef] [PubMed]
- Belver, C.; Hinojosa, M.; Bedia, J.; Tobajas, M.; Alvarez, M.A.; Rodríguez-González, V. Electronic supplementary information ag-coated heterostructures of ZnO-TiO2/ delaminated montmorillonite as solar photocatalysts. Materials 2017, 10, 960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.W.; Chen, S.H.; Wang, S.M.; Ye, Z.L.; Wu, P.; Xu, B. Favorable recycling photocatalyst TiO2/CFA: Effects of calcination temperature on the structural property and photocatalytic activity. J. Mol. Catal. A Chem. 2010, 330, 41–48. [Google Scholar] [CrossRef]
- Han, R.; Zhang, J.; Han, P.; Wang, Y.; Zhao, Z.; Tang, M. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chem. Eng. J. 2009, 145, 496–504. [Google Scholar] [CrossRef]
- Sahoo, S.; Uma; Banerjee, S.; Sharma, Y.C. Application of natural clay as a potential adsorbent for the removal of a toxic dye from aqueous solutions. Desalin. Water Treat. 2013, 52, 6703–6711. [Google Scholar] [CrossRef]
- Li, H.; Dai, M.; Dai, S.; Dong, X.; Li, F. Methylene blue adsorption properties of mechanochemistry modified coal fly ash. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 2133–2141. [Google Scholar] [CrossRef]
- Nayeri, D.; Mousavi, S.A.; Fatahi, M.; Almasi, A.; Khodadoost, F. Dataset on adsorption of methylene blue from aqueous solution onto activated carbon obtained from low cost wastes by chemical-thermal activation—Modelling using response surface methodology. Data Br. 2019, 25, 104036. [Google Scholar] [CrossRef]
- Nourmoradi, H.; Ghiasvand, A.; Noorimotlagh, Z. Removal of methylene blue and acid orange 7 from aqueous solutions by activated carbon coated with zinc oxide (ZnO) nanoparticles: Equilibrium, kinetic, and thermodynamic study. Desalin. Water Treat. 2014, 55, 252–262. [Google Scholar] [CrossRef]
CLAY | Al2O3 | SiO2 | MgO | P2O5 | K2O | CaO | TiO2 | MnO | Fe2O3 | Co3O4 | SnO2 | CeO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CLAY 1 | 13.50 | 66.70 | 2.07 | 0.00 | 1.33 | 1.50 | 0.10 | 0.06 | 0.53 | 0.14 | 0.53 | 0.00 |
CLAY 2 | 12.10 | 61.00 | 0.00 | 0.26 | 1.19 | 0.53 | 0.29 | 0.06 | 1.63 | 0.42 | 0.16 | 0.04 |
CLAY 3 | 23.10 | 50.40 | 3.17 | 0.23 | 2.51 | 0.22 | 0.41 | 0.08 | 2.45 | 0.61 | 0.00 | 0.12 |
CLAY 4 | 18.50 | 52.90 | 0.69 | 0.00 | 1.49 | 0.33 | 0.45 | 0.08 | 2.14 | 0.54 | 0.03 | 0.11 |
CLAY 5 | 21.40 | 40.70 | 2.95 | 0.27 | 0.00 | 0.21 | 0.48 | 0.15 | 4.04 | 1.00 | 0.15 | 0.13 |
CLAY 6 | 21.20 | 45.60 | 2.05 | 0.29 | 1.63 | 1.22 | 0.39 | 0.06 | 1.94 | 0.48 | 0.00 | 0.10 |
CLAY 7 | 22.30 | 31.90 | 2.65 | 0.39 | 0.09 | 0.84 | 0.72 | 0.12 | 3.63 | 0.89 | 0.44 | 0.12 |
CLAY 8 | 19.90 | 30.20 | 0.00 | 0.30 | 0.03 | 0.28 | 1.01 | 0.35 | 7.81 | 0.00 | 0.05 | 0.18 |
CLAY 9 | 13.80 | 40.00 | 0.00 | 0.00 | 0.19 | 0.51 | 0.57 | 0.09 | 3.17 | 0.80 | 0.27 | 0.24 |
CLAY 10 | 22.50 | 35.47 | 0.00 | 0.05 | 0.18 | 0.87 | 1.81 | 0.38 | 17.27 | 0.00 | 0.07 | 0.00 |
CLAY 11 | 22.20 | 37.80 | 0.00 | 0.19 | 0.00 | 0.08 | 0.30 | 0.08 | 2.48 | 0.61 | 0.04 | 0.04 |
CLAY 12 | 27.10 | 39.40 | 0.00 | 0.26 | 0.78 | 0.12 | 2.16 | 0.10 | 22.40 | 0.07 | 0.17 | 0.08 |
Material | MB Degradation Capacity (mg/g) | References |
---|---|---|
Clay6 | 19.33 | This study |
ZnTiO3/TiO2-Clay6 | 19.98 | This study |
TiO2-Clay6 | 18.52 | This study |
Clay12 | 17.11 | This study |
ZnTiO3/TiO2-Clay12 | 14.47 | This study |
TiO2-Clay12 | 16.85 | This study |
ZnTiO3/TiO2 | 18.40 | This study |
TiO2 | 17.80 | This study |
a-TiO2/ZnTiO3 | 16.00 | [41] |
a-TiO2 | 15.00 | [41] |
Red-clay | 18.83 | [64] |
Zeolite | 16.37 | [74] |
Natural clay | 15.40 | [75] |
Raw Coal fly ash | 5.06 | [76] |
Activated carbon | 6.43 | [77] |
AC-ZnO | 32.22 | [78] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo-Fierro, X.; González, S.; Jaramillo, H.A.; Medina, F. Synthesis of the ZnTiO3/TiO2 Nanocomposite Supported in Ecuadorian Clays for the Adsorption and Photocatalytic Removal of Methylene Blue Dye. Nanomaterials 2020, 10, 1891. https://doi.org/10.3390/nano10091891
Jaramillo-Fierro X, González S, Jaramillo HA, Medina F. Synthesis of the ZnTiO3/TiO2 Nanocomposite Supported in Ecuadorian Clays for the Adsorption and Photocatalytic Removal of Methylene Blue Dye. Nanomaterials. 2020; 10(9):1891. https://doi.org/10.3390/nano10091891
Chicago/Turabian StyleJaramillo-Fierro, Ximena, Silvia González, Hipatia Alvarado Jaramillo, and Francesc Medina. 2020. "Synthesis of the ZnTiO3/TiO2 Nanocomposite Supported in Ecuadorian Clays for the Adsorption and Photocatalytic Removal of Methylene Blue Dye" Nanomaterials 10, no. 9: 1891. https://doi.org/10.3390/nano10091891
APA StyleJaramillo-Fierro, X., González, S., Jaramillo, H. A., & Medina, F. (2020). Synthesis of the ZnTiO3/TiO2 Nanocomposite Supported in Ecuadorian Clays for the Adsorption and Photocatalytic Removal of Methylene Blue Dye. Nanomaterials, 10(9), 1891. https://doi.org/10.3390/nano10091891