The Influence of the Structural and Morphological Properties of WO3 Thin Films Obtained by PLD on the Photoelectrochemical Water-Splitting Reaction Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Films Deposition
2.2. Characterization and Photoelectrochemical Measurements
3. Results and Discussion
3.1. Structural Characterization
3.1.1. XRD Measurements
3.1.2. XTEM Measurements
3.2. Optical Characterization
3.3. Photoelectrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yogesh, M.; Seyed, E.H.; Brayden, B.; Hisham, A.; Bhi, T.F.S.; Turaj, A.; John, K. Hydrogen fuel cell vehicles; Current status and future prospect. Appl. Sci. 2019, 9, 2296. [Google Scholar] [CrossRef] [Green Version]
- Takashi, H.; Kazunari, D. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387–399. [Google Scholar]
- Konieczny, A.; Mondal, K.; Wiltowski, T.; Dydo, P. Catalyst development for thermocatalytic decomposition of methane to hydrogen. Int. J. Hydrog. Energy 2008, 33, 264–272. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Michael, G.W.; Emily, L.W.; James, R.M.; Shannon, W.B.; Qixi, M.; Elizabeth, A.S.; Nathan, S.L. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar]
- Ju, S.K.; Byunghoon, K.; Hyunah, K.; Kisuk, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 1702774. [Google Scholar] [CrossRef]
- Congling, H.; Lei, Z.; Jinlong, G. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645. [Google Scholar]
- Wang, W.; Xu, X.; Zhou, W.; Shao, Z. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 2017, 4, 1600371. [Google Scholar] [CrossRef]
- Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R.C.; Wang, C.; Zhang, J.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033. [Google Scholar] [CrossRef]
- Wang, B.S.; Li, R.Y.; Zhang, Z.Y.; Wang, X.; Wu, X.L.; Cheng, G.A.; Zheng, R.T. An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting. Catal. Today 2019, 321–322, 100–106. [Google Scholar] [CrossRef]
- Xiaobo, C.; Haifeng, Z.; Qin, P.; Jialin, B.; Zuofeng, C.; Chuanwei, C. 3D ordered urchin-like TiO2@Fe2O3 arrays photoanode for efficient photoelectrochemical water splitting. Appl. Surf. Sci. 2019, 470, 668–676. [Google Scholar]
- Zemin, Z.; Caitian, G.; Zimao, W.; Weihua, H.; Yaling, W.; Wenbing, F.; Xiaodong, L.; Erqing, X. Toward efficient photoelectrochemical water-splitting by using screw-like SnO2 nanostructures as photoanode after being decorated with CdS quantum dots. Nano Energy 2016, 19, 318–327. [Google Scholar]
- Chenyan, H.; Kenneth, C.; Yihua, Z.; Wey, Y.T. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films. ACS Appl. Mater. Interfaces 2014, 6, 18558–18568. [Google Scholar]
- Luo, J.; Steier, L.; Son, M.K.; Schreier, M.; Mayer, M.T.; Grätzel, M. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 2016, 16, 1848–1857. [Google Scholar] [CrossRef]
- Yang, L.; Lei, X.; Yan, L.; Rong, Y.; Jianglan, Q.; Yaoqi, L.; Xingguo, L. Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation. J. Power Sources 2008, 183, 701–707. [Google Scholar]
- Akihiko, K. Development of photocatalyst materials for water splitting. Development of Photocatalyst Materials for Water Splitting. Int. J. Hydrog. Energy 2006, 31, 197–202. [Google Scholar]
- Liu, Q.; Mo, R.; Li, X.; Yang, S.; Zhong, J.; Li, X. Cobalt phosphate modified 3D TiO2/BiVO4 composite inverse opals photoanode for enhanced photoelectrochemical water splitting. Appl. Surf. Sci. 2019, 464, 544–551. [Google Scholar] [CrossRef]
- Andrei, F.; Boerasu, I.; Moldovan, A.; Dinescu, M.; Ion, V.; Mihailescu, C.; Scarisoreanu, N.D.; Leca, V. The effects of the oxygen content on the photoelectrochemical properties of LaFeO3 perovskite thin films obtained by pulsed laser deposition. Appl. Phys. A 2019, 125, 807. [Google Scholar] [CrossRef]
- Carrie, G.R.; Yiseul, P.; Kyoung, S.C. Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell. J. Phys. Chem. Lett. 2012, 14, 1872–1876. [Google Scholar]
- Berglund, S.P.; Abdi, F.F.; Bogdanoff, P.; Chemseddine, A.; Friedrich, D.; van de Krol, R. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chem. Mater. 2016, 28, 4231–4242. [Google Scholar] [CrossRef]
- Park, S.; Baek, J.H.; Zhang, L.; Lee, J.M.; Stone, K.H.; Cho, I.S.; Guo, J.; Jung, H.S.; Zheng, X. Rapid flame-annealed CuFe2O4 as efficient photocathode for photoelectrochemical hydrogen production. ACS Sustain. Chem. Eng. 2019, 7, 5867–5874. [Google Scholar] [CrossRef]
- Pokhrel, S.; Simion, C.E.; Teodorescu, V.S.; Barsan, N.; Weimar, U. Synthesis, mechanism, and gas-sensing application of surfactant tailored tungsten oxide nanostructures. Adv. Funct. Mater. 2009, 19, 1767–1774. [Google Scholar] [CrossRef]
- Filipescu, M.; Orlando, S.; Russo, V.; Lamperti, A.; Purice, A.; Moldovan, A.; Dinescu, M. Pulsed laser deposition of nanostructured MoS3/np-Mo//WO3−y Hybrid catalyst for enhanced (photo) electrochemical hydrogen evolution. Appl. Surf. Sci. 2007, 253, 8258–8262. [Google Scholar] [CrossRef] [Green Version]
- Josny, J.; Jinu, M.; Soney, C.G. Nanomaterials for photoelectrochemical water splitting—Review. Int. J. Hydrog. Energy 2018, 43, 4804–4817. [Google Scholar]
- James, C.H.; Kyoung, S.C. Effect of electrolytes on the selectivity and stability of n-type WO3 photoelectrodes for use in solar water oxidation. J. Phys. Chem. 2012, 116, 7612–7620. [Google Scholar]
- Jason, A.S.; Kyoung, S.C. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 2011, 23, 1105–1112. [Google Scholar]
- Qixi, M.; Almagul, Z.; Bruce, S.B.; Harry, B.G.; Nathan, S.L. A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy Environ. Sci. 2012, 5, 5694–5700. [Google Scholar]
- Emin, S.; de Respinis, M.; Fanetti, M.; Smith, W.; Valant, M.; Dam, B. A simple route for preparation of textured WO3 thin films from colloidal W nanoparticles and their photoelectrochemical water splitting properties. Appl. Catal. B 2015, 166−167, 406–441. [Google Scholar]
- Su, J.; Feng, X.; Sloppy, J.D.; Guo, L.; Grimes, C.A. Vertically aligned WO₃ nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties. Nano Lett. 2011, 11, 203–208. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Hwang, Y.J.; Chae, S.Y.; Joo, O.S. Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J. Mater. Chem. A 2013, 1, 3479–3488. [Google Scholar] [CrossRef]
- Feng, X.; Chen, Y.; Qin, Z.; Wang, M.; Guo, L. Facile fabrication of sandwich structured WO3 nanoplate arrays for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2016, 8, 18089–18096. [Google Scholar] [PubMed]
- Wang, N.; Wang, D.; Li, M.; Shi, J.; Li, C. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3. Nanoscale 2014, 6, 2061–2066. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Han, H.S.; Kim, J.S.; Park, I.J.; Lee, M.H.; Hong, K.S.; Cho, I.S. A tree-like nanoporous WO3 photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation. J. Mater. Chem. A 2015, 3, 12920–12926. [Google Scholar] [CrossRef]
- Fàbrega, C.; López, S.; Satoca, D.; Prades, J.D.; Alonso, M.D.; Penelas, G.; Morante, J.R.; Andreu, T. Efficient WO3 photoanodes fabricated by pulsed laser deposition for photoelectrochemical water splitting with high faradaic efficiency. Appl. Catal. B Environ. 2016, 189, 133–140. [Google Scholar]
- Norton, D.P. Pulsed laser deposition of complex materials: Progress toward applications. In Pulsed Laser Deposition of Thin Films; Eason, R., Ed.; Wiley: Hoboken, NJ, USA, 2007; pp. 3–28. [Google Scholar]
- Filipescu, M.; Ion, V.; Colceag, D.; Ossi, P.M.; Dinescu, M. Growth and characterizations of nanostructured tungsten oxides. Rom. Rep. Phys. 2012, 64, 1213–1225. [Google Scholar]
- Wang, G.; Ling, Y.; Wang, H.; Yang, X.; Wang, C.; Zhang, J.Z.; Li, Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ. Sci. 2012, 5, 6180–6187. [Google Scholar] [CrossRef]
- Zhao, Y.; Balasubramanyam, S.; Sinha, R.; Lavrijsen, R.; Verheijen, M.; Bol, A.A.; Hutter, B.A. Physical and chemical defects in WO3 thin films and their impact on photoelectrochemical water splitting. ACS Appl. Energy Mater. 2018, 1, 5887–5895. [Google Scholar] [CrossRef] [Green Version]
- Kay, A.; Cesar, I.; Gratzel, M. New benchmark for water photooxidation bynanostructured a-Fe2O3 films. J. Am. Chem. Soc. 2006, 128, 15714–15721. [Google Scholar] [CrossRef]
- Qiu, Y.; Leung, S.F.; Zhang, Q.; Hua, B.; Lin, Q.; Wei, Z.; Tsui, K.H.; Zhang, Y.; Yang, S.; Fan, Z. Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures. Nano Lett. 2014, 14, 2123–2129. [Google Scholar] [CrossRef]
- Pala, R.A.; Leenheer, A.J.; Lichterman, M.; Atwater, H.A.; Lewis, N.S. Measurementof minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes. Energy Environ. Sci. 2014, 7, 3424–3430. [Google Scholar]
- Heumann, T.; Stolica, N. The electrochemical behaviour of tungsten—II. The dissolution of tungsten in NaOH solutions. Electrochim. Acta 1971, 16, 1635–1646. [Google Scholar] [CrossRef]
- Rania, B.J.; Kumarb, M.P.; Ravichandranb, S.; Ravia, G.; Ganeshc, V.; Gudurud, R.K.; Yuvakkumara, R.; Honge, S.I. WO3 nanocubes for photoelectrochemical water-splitting applications. J. Phys. Chem. Solids 2019, 134, 149–156. [Google Scholar] [CrossRef]
- Ishihara, H.; Kannarpady, K.G.; Khedir, R.K.; Woo, J.; Trigwell, S.; Biris, S.A. A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting. Phys. Chem. Chem. Phys. 2011, 13, 19553–19560. [Google Scholar] [CrossRef] [PubMed]
- Mai, M.; Ma, X.; Zhou, H.; Ye, M.; Li, T.; Ke, S.; Lin, P.; Zeng, X. Effect of oxygen pressure on pulsed laser deposited WO3 thin films for photoelectrochemical water splitting. J. Alloys Compd. 2017, 722, 913–919. [Google Scholar] [CrossRef]
- Zou, Y.S.; Zhang, Y.C.; Lou, D.; Wang, H.P.; Gu, L.; Dong, Y.H.; Dou, K.; Song, X.F.; Zeng, H.B. Structural and optical properties of WO3 films deposited by pulsed laser deposition. J. Alloys Compd. 2014, 583, 465–470. [Google Scholar] [CrossRef]
- Palla, P.A.; Filipescu, M.; Schneider, W.C.; Antohe, S.; Ossi, M.P.; Radnóczi, G.; Dinescu, M.; Wokaun, A.; Lippert, T. Direct laser deposition of nanostructured tungsten oxide for sensing applications. J. Phys. D Appl. Phys. 2016, 49, 205101. [Google Scholar] [CrossRef]
- Fujiwara, H.; Collins, R.W. Fundamental principles and solar cell characterization. In Spectroscopic Ellipsometry for Photovoltaics; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Zheng, G.; Wang, J.; Liu, H.; Murugadoss, V.; Zu, G.; Che, H.; Lai, C.; Li, H.; Ding, T.; Gao, Q.; et al. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale 2019, 11, 18968–18994. [Google Scholar] [CrossRef]
- Crawford, S.; Thimsen, E.; Biswas, P. Impact of different electrolytes on photocatalytic water splitting. J. Electrochem. Soc. 2009, 156, H346–H351. [Google Scholar]
- Fekete, M.; Riedel, W.; Patti, A.F.; Spiccia, L. Photoelectrochemical water oxidation by screen printed ZnO nanoparticle films: Effect of pH on catalytic activity and stability. Nanoscale 2014, 6, 7585–7593. [Google Scholar] [CrossRef]
- Tayyebi, A.; Soltani, T.; Lee, B.K. Effect of pH on photocatalytic and photoelectrochemical (PEC) properties of monoclinic bismuth vanadate. J. Colloid Interface Sci. 2018, 534, 37–46. [Google Scholar]
- Yourey, J.E.; Kurt, J.B.; Bartlett, B.M. Water oxidation on a CuWO4−WO3 composite electrode in the presence of [Fe(CN)6]3−: Toward solar Z-scheme water splitting at zero bias. J. Phys. Chem. C 2012, 116, 3200–3205. [Google Scholar] [CrossRef]
- Raja, K.S.; Mahajan, V.K.; Misra, M. Determination of photo conversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation. J. Power Sources 2006, 159, 1258–1265. [Google Scholar] [CrossRef]
Laser Wavelength (nm) | K404 nm (dimensionless) | Absorption Coefficient α404 nm × 104 (cm−1) |
---|---|---|
193 | 0.06142 | 1.91 |
355 | 0.11657 | 3.62 |
1064 | 0.10747 | 3.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrei, F.; Andrei, A.; Birjega, R.; Sirjita, E.N.; Radu, A.I.; Dinescu, M.; Ion, V.; Maraloiu, V.-A.; Teodorescu, V.Ş.; Scarisoreanu, N.D. The Influence of the Structural and Morphological Properties of WO3 Thin Films Obtained by PLD on the Photoelectrochemical Water-Splitting Reaction Efficiency. Nanomaterials 2021, 11, 110. https://doi.org/10.3390/nano11010110
Andrei F, Andrei A, Birjega R, Sirjita EN, Radu AI, Dinescu M, Ion V, Maraloiu V-A, Teodorescu VŞ, Scarisoreanu ND. The Influence of the Structural and Morphological Properties of WO3 Thin Films Obtained by PLD on the Photoelectrochemical Water-Splitting Reaction Efficiency. Nanomaterials. 2021; 11(1):110. https://doi.org/10.3390/nano11010110
Chicago/Turabian StyleAndrei, Florin, Andreea Andrei, Ruxandra Birjega, Eduard Nicolae Sirjita, Alina Irina Radu, Maria Dinescu, Valentin Ion, Valentin-Adrian Maraloiu, Valentin Şerban Teodorescu, and Nicu Doinel Scarisoreanu. 2021. "The Influence of the Structural and Morphological Properties of WO3 Thin Films Obtained by PLD on the Photoelectrochemical Water-Splitting Reaction Efficiency" Nanomaterials 11, no. 1: 110. https://doi.org/10.3390/nano11010110
APA StyleAndrei, F., Andrei, A., Birjega, R., Sirjita, E. N., Radu, A. I., Dinescu, M., Ion, V., Maraloiu, V. -A., Teodorescu, V. Ş., & Scarisoreanu, N. D. (2021). The Influence of the Structural and Morphological Properties of WO3 Thin Films Obtained by PLD on the Photoelectrochemical Water-Splitting Reaction Efficiency. Nanomaterials, 11(1), 110. https://doi.org/10.3390/nano11010110