Microfabrication and Surface Functionalization of Soda Lime Glass through Direct Laser Interference Patterning
Abstract
:1. Introduction
- -
- Multiphoton ionization: an electron in the valence band can absorb several visible or near-infrared photons and gain enough energy to cross the band gap [47].
- -
- Tunneling photoionization: the strong electric field suppresses the Coulomb barrier and allows the electron to tunnel through. The free electrons created by nonlinear photoionization can then absorb more energy from the laser pulse by inverse bremsstrahlung. If the energy of the free carriers becomes high enough, they can also promote an electron from the valence to the conduction band by impact ionization, leading to an avalanche process [48].
2. Materials and Methods
2.1. Glass Substrates
2.2. Direct Laser Interference Patterning Setups
2.3. Structuring Strategy
2.4. Topography Characterization
2.5. Wettability Characterization
2.6. Optical Characterization
3. Results
3.1. Direct Fabrication of Microstructures on Glass
3.2. Wettability of Textured Glass Surfaces
3.3. Optical Properties
3.4. Outlook on Four-Beam DLIP Structuring
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Calculation of Diffraction Efficiency of a Thin Sinusoidal Phase Grating
Appendix B
Spatial period [µm] | 2.3 | 3.9 | 5.9 |
Fluence [J/cm2] | 2.16 | 2.01 | 4.88 |
Number of pulses | 14 | 10 | 11 |
Structure depth [µm] | 0.34 | 0.30 | 2.21 |
Diffraction efficiency [%] | 27.8 | 32.7 | - |
Contact angle [°] | 7.2 | 5.9 | 10.1 |
References
- Righini, G.C.; Chiappini, A. Glass Optical Waveguides: A Review of Fabrication Techniques. Opt. Eng. 2014, 53, 071819. [Google Scholar] [CrossRef]
- Zhang, H.; Lee, Y.Y.; Leck, K.J.; Kim, N.Y.; Ying, J.Y. Recyclable Hydrophilic- Hydrophobic Micropatterns on Glass for Microarray Applications. Langmuir 2007, 23, 4728–4731. [Google Scholar] [CrossRef] [PubMed]
- Ainslie, K.M.; Desai, T.A. Microfabricated Implants for Applications in Therapeutic Delivery, Tissue Engineering, and Biosensing. Lab Chip 2008, 8, 1864–1878. [Google Scholar] [CrossRef] [PubMed]
- Bertin, A.; Schlaad, H. Mild and Versatile (Bio-)Functionalization of Glass Surfaces via Thiol−Ene Photochemistry. Chem. Mater. 2009, 21, 5698–5700. [Google Scholar] [CrossRef]
- Ottevaere, H.; Cox, R.; Herzig, H.P.; Miyashita, T.; Naessens, K.; Taghizadeh, M.; Völkel, R.; Woo, H.J.; Thienpont, H. Comparing Glass and Plastic Refractive Microlenses Fabricated with Different Technologies. J. Opt. A Pure Appl. Opt. 2006, 8, S407–S429. [Google Scholar] [CrossRef] [Green Version]
- Kuna, L.; Haase, A.; Sommer, C.; Zinterl, E.; Krenn, J.R.; Wenzl, F.P.; Pachler, P.; Hartmann, P.; Tasch, S.; Leising, G. Improvement of Light Extraction from High-Power Flip-Chip Light-Emitting Diodes by Femtosecond Laser Direct Structuring of the Sapphire Backside Surface. J. Appl. Phys. 2008, 104, 074507. [Google Scholar] [CrossRef]
- Fuchs, A.; Kanoufi, F.; Combellas, C.; Shanahan, M.E.R. Wetting and Surface Properties of (Modified) Fluoro-Silanised Glass. Colloid Surf. A 2007, 307, 7–15. [Google Scholar] [CrossRef]
- Kolli, M.; Hamidouche, M.; Bouaouadja, N.; Fantozzi, G. HF Etching Effect on Sandblasted Soda-Lime Glass Properties. J. Eur. Ceram. Soc. 2009, 29, 2697–2704. [Google Scholar] [CrossRef]
- Wei, M.; Bowman, R.S.; Wilson, J.L.; Morrow, N.R. Wetting Properties and Stability of Silane-Treated Glass Exposed to Water, Air, and Oil. J. Colloid Interf. Sci. 1993, 157, 154–159. [Google Scholar] [CrossRef]
- Fang, Z.; Qiu, X.; Qiu, Y.; Kuffel, E. Dielectric Barrier Discharge in Atmospheric Air for Glass-Surface Treatment to Enhance Hydrophobicity. IEEE Trans. Plasma Sci. 2006, 34, 1216–1222. [Google Scholar] [CrossRef]
- Kim, S.H.; Yang, Y.; Kim, M.; Nam, S.-W.; Lee, K.-M.; Lee, N.Y.; Kim, Y.S.; Park, S. Simple Route to Hydrophilic Microfluidic Chip Fabrication Using an Ultraviolet (UV)-Cured Polymer. Adv. Funct. Mater. 2007, 17, 3493–3498. [Google Scholar] [CrossRef]
- Domke, M.; Sonderegger, G.; Kostal, E.; Matylitsky, V.; Stroj, S. Transparent Laser-Structured Glasses with Superhydrophilic Properties for Anti-Fogging Applications. Appl. Phys. A 2019, 125, 675. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, Y.; Shi, L.; Li, J.; Xin, Y.; Yang, T.; Guo, Z. Transparent Superhydrophobic/Superhydrophilic Coatings for Self-Cleaning and Anti-Fogging. Appl. Phys. Lett. 2012, 101, 033701. [Google Scholar] [CrossRef]
- Akhtar, N.; Thomas, P.J.; Svardal, B.; Almenningen, S.; de Jong, E.; Magnussen, S.; Onck, P.R.; Fernø, M.A.; Holst, B. Pillars or Pancakes? Self-Cleaning Surfaces without Coating. Nano Lett. 2018, 18, 7509–7514. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Wang, S.; Lin, L.; Chen, L.; Liu, M.; Feng, L.; Jiang, L. A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation. Adv. Mater. 2011, 23, 4270–4273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, G.; Gao, S.; Jin, H.; Zhu, Y.; Zhang, F.; Jin, J. Cupric Phosphate Nanosheets-Wrapped Inorganic Membranes with Superhydrophilic and Outstanding Anticrude Oil-Fouling Property for Oil/Water Separation. ACS Nano 2018, 12, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bunte, E.; Worbs, J.; Siekmann, H.; Kirchhoff, J.; Gordijn, A.; Hüpkes, J. Rough Glass by 3d Texture Transfer for Silicon Thin Film Solar Cells. Phys. Status Solidi C 2010, 7, 1120–1123. [Google Scholar] [CrossRef]
- Chen, T.-G.; Yu, P.; Tsai, Y.-L.; Shen, C.-H.; Shieh, J.-M.; Tsai, M.-A.; Kuo, H.-C. Nano-Patterned Glass Superstrates with Different Aspect Ratios for Enhanced Light Harvesting in a-Si: H Thin Film Solar Cells. Opt. Express 2012, 20, A412–A417. [Google Scholar] [CrossRef]
- Yang, G.; van Swaaij, R.A.; Tan, H.; Isabella, O.; Zeman, M. Modulated Surface Textured Glass as Substrate for High Efficiency Microcrystalline Silicon Solar Cells. Sol. Energy Mater. Sol. Cells 2015, 133, 156–162. [Google Scholar] [CrossRef]
- Son, J.; Kundu, S.; Verma, L.K.; Sakhuja, M.; Danner, A.J.; Bhatia, C.S.; Yang, H. A Practical Superhydrophilic Self Cleaning and Antireflective Surface for Outdoor Photovoltaic Applications. Sol. Energy Mater. Sol. Cells 2012, 98, 46–51. [Google Scholar] [CrossRef]
- Verma, L.K.; Sakhuja, M.; Son, J.; Danner, A.J.; Yang, H.; Zeng, H.C.; Bhatia, C.S. Self-Cleaning and Antireflective Packaging Glass for Solar Modules. Renew. Energy 2011, 36, 2489–2493. [Google Scholar] [CrossRef]
- Trinh, Q.H.; Hossain, M.d.M.; Kim, S.H.; Mok, Y.S. Tailoring the Wettability of Glass Using a Double-Dielectric Barrier Discharge Reactor. Heliyon 2018, 4, e00522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpiłowski, K.; Rymuszka, D.; Goncharuk, O.V.; Sulym, I.Y.; Gun’ko, V.M. Wettability of Modified Silica Layers Deposited on Glass Support Activated by Plasma. Appl. Surf. Sci. 2015, 353, 843–850. [Google Scholar] [CrossRef]
- Kontziampasis, D.; Boulousis, G.; Smyrnakis, A.; Ellinas, K.; Tserepi, A.; Gogolides, E. Biomimetic, Antireflective, Superhydrophobic and Oleophobic PMMA and PMMA-Coated Glass Surfaces Fabricated by Plasma Processing. Microelectron. Eng. 2014, 121, 33–38. [Google Scholar] [CrossRef]
- Wang, S.; Deng, Y.; Yang, L.; Shi, X.; Yang, W.; Chen, Z.-G. Enhanced Antibacterial Property and Osteo-Differentiation Activity on Plasma Treated Porous Polyetheretherketone with Hierarchical Micro/Nano-Topography. J. Biomater. Sci. Polym. Ed. 2018, 29, 520–542. [Google Scholar] [CrossRef] [PubMed]
- Kontziampasis, D.; Trantidou, T.; Regoutz, A.; Humphrey, E.J.; Carta, D.; Terracciano, C.M.; Prodromakis, T. Effects of Ar and O2 Plasma Etching on Parylene C: Topography versus Surface Chemistry and the Impact on Cell Viability. Plasma Process. Polym. 2016, 13, 324–333. [Google Scholar] [CrossRef]
- Awaja, F.; Tripathi, M.; Wong, T.-T.; O’Brien, T.; Speranza, G. The Chemistry and Topography of Stabilized and Functionalized Graphene Oxide Coatings. Plasma Process Polym. 2018, 15, 1800084. [Google Scholar] [CrossRef]
- Hein, E.; Fox, D.; Fouckhardt, H. Glass Surface Modification by Lithography-Free Reactive Ion Etching in an Ar/CF4-Plasma for Controlled Diffuse Optical Scattering. Surf. Coat. Tech. 2011, 205, S419–S424. [Google Scholar] [CrossRef]
- Jain, H.; Vlcek, M. Glasses for Lithography. J. Non Cryst. Solids 2008, 354, 1401–1406. [Google Scholar] [CrossRef]
- Hicks, E.M.; Lyandres, O.; Hall, W.P.; Zou, S.; Glucksberg, M.R.; Van Duyne, R.P. Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography. J. Phys. Chem. C 2007, 111, 4116–4124. [Google Scholar] [CrossRef]
- Hannes, B.; Vieillard, J.; Chakra, E.B.; Mazurczyk, R.; Mansfield, C.D.; Potempa, J.; Krawczyk, S.; Cabrera, M. The Etching of Glass Patterned by Microcontact Printing with Application to Microfluidics and Electrophoresis. Sensors Actuators B Chem. 2008, 129, 255–262. [Google Scholar] [CrossRef]
- Coltro, W.K.T.; Piccin, E.; da Silva, J.A.F.; do Lago, C.L.; Carrilho, E. A Toner-Mediated Lithographic Technology for Rapid Prototyping of Glass Microchannels. Lab Chip 2007, 7, 931–934. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.; Knoll, A.W.; Riedo, E. Advanced Scanning Probe Lithography. Nat. Nanotechnol. 2014, 9, 577–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, M.P.; Guo, X.; Grunblatt, E.L.; Clifton, G.M.; Gonzalez, A.N.; LaFratta, C.N. Augmenting Mask-Based Lithography with Direct Laser Writing to Increase Resolution and Speed. Opt. Express 2018, 26, 7085–7090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buividas, R.; Mikutis, M.; Juodkazis, S. Surface and Bulk Structuring of Materials by Ripples with Long and Short Laser Pulses: Recent Advances. Prog. Quantum Electron. 2014, 38, 119–156. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, C.; Shang, S.; Liu, D.; Perrie, W.; Dearden, G.; Watkins, K. A Review of Ultrafast Laser Materials Micromachining. Opt. Laser Technol. 2013, 46, 88–102. [Google Scholar] [CrossRef]
- Lorenz, P.; Ehrhardt, M.; Zimmer, K. Laser-Induced Front Side and Back Side Etching of Fused Silica with KrF and XeF Excimer Lasers Using Metallic Absorber Layers: A Comparison. Appl. Surf. Sci. 2012, 258, 9742–9746. [Google Scholar] [CrossRef]
- Zhang, J.; Sugioka, K.; Midorikawa, K. Laser-Induced Plasma-Assisted Ablation of Fused Quartz Using the Fourth Harmonic of a Nd+: YAG Laser. Appl. Phys. A 1998, 67, 545–549. [Google Scholar] [CrossRef]
- Shkuratova, V.A.; Kostyuk, G.K.; Sergeev, M.M.; Zakoldaev, R.A.; Yakovlev, E.B. Speckle-Free Smoothing of Coherence Laser Beams by a Homogenizer on Uniaxial High Birefringent Crystal. Opt. Mater. Express 2019, 9, 2392–2399. [Google Scholar] [CrossRef]
- Alamri, S.; Sürmann, P.A.; Lasagni, A.F.; Kunze, T. Interference-Based Laser-Induced Micro-Plasma Ablation of Glass. Adv. Opt. Tech. 2020, 9, 79–88. [Google Scholar] [CrossRef]
- Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Ding, X.; Kurosaki, R. Surface Microfabrication of Fused Silica Glass by UV Laser Irradiation. In Proceedings of the Photon Processing in Microelectronics and Photonics III, San Jose, CA, USA, 25–29 January 2004; International Society for Optics and Photonics: San Jose, CA, USA, 2004; Volume 5339, pp. 112–117. [Google Scholar]
- Herman, P.R.; Marjoribanks, R.S.; Oettl, A.; Chen, K.; Konovalov, I.; Ness, S. Laser Shaping of Photonic Materials: Deep-Ultraviolet and Ultrafast Lasers. Appl. Surf. Sci. 2000, 154–155, 577–586. [Google Scholar] [CrossRef]
- Schwerter, M.; Gräbner, D.; Hecht, L.; Vierheller, A.; Leester-Schädel, M.; Dietzel, A. Surface-Passive Pressure Sensor by Femtosecond Laser Glass Structuring for Flip-Chip-in-Foil Integration. J. Microelectromech. Syst. 2016, 25, 517–523. [Google Scholar] [CrossRef]
- Ihlemann, J.; Wolff-Rottke, B. Excimer Laser Micro Machining of Inorganic Dielectrics. Appl. Surf. Sci. 1996, 106, 282–286. [Google Scholar] [CrossRef]
- Stoian, R.; Boyle, M.; Thoss, A.; Rosenfeld, A.; Korn, G.; Hertel, I.V.; Campbell, E.E.B. Laser Ablation of Dielectrics with Temporally Shaped Femtosecond Pulses. Appl. Phys. Lett. 2002, 80, 353–355. [Google Scholar] [CrossRef]
- Du, D.; Liu, X.; Korn, G.; Squier, J.; Mourou, G. Laser-induced Breakdown by Impact Ionization in SiO2 with Pulse Widths from 7 Ns to 150 Fs. Appl. Phys. Lett. 1994, 64, 3071–3073. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, C.B.; Brodeur, A.; Mazur, E. Laser-Induced Breakdown and Damage in Bulk Transparent Materials Induced by Tightly Focused Femtosecond Laser Pulses. Meas. Sci. Technol. 2001, 12, 1784. [Google Scholar] [CrossRef]
- Mao, S.S.; Quéré, F.; Guizard, S.; Mao, X.; Russo, R.E.; Petite, G.; Martin, P. Dynamics of Femtosecond Laser Interactions with Dielectrics. Appl. Phys. A 2004, 79, 1695–1709. [Google Scholar] [CrossRef]
- Jamshidi-Ghaleh, K.; Masalehdan, H. Modeling of Nonlinear Responses in BK7 Glass under Irradiation of Femtosecond Laser Pulses. Opt. Quantum Electron. 2009, 41, 47–53. [Google Scholar] [CrossRef]
- Sun, M.; Eppelt, U.; Russ, S.; Hartmann, C.; Siebert, C.; Zhu, J.; Schulz, W. Numerical Analysis of Laser Ablation and Damage in Glass with Multiple Picosecond Laser Pulses. Opt. Express 2013, 21, 7858–7867. [Google Scholar] [CrossRef]
- Rohloff, M.; Das, S.K.; Höhm, S.; Grunwald, R.; Rosenfeld, A.; Krüger, J.; Bonse, J. Formation of Laser-Induced Periodic Surface Structures on Fused Silica upon Multiple Parallel Polarized Double-Femtosecond-Laser-Pulse Irradiation Sequences. Appl. Surf. Sci. 2012, 258, 9233–9236. [Google Scholar] [CrossRef]
- Ahsan, M.d.S.; Lee, M.S.; Hasan, M.K.; Noh, Y.-C.; Sohn, I.-B.; Ahmed, F.; Jun, M.B.G. Formation Mechanism of Self-Organized Nano-Ripples on Quartz Surface Using Femtosecond Laser Pulses. Optik 2015, 126, 5979–5983. [Google Scholar] [CrossRef]
- Yin, K.; Wang, C.; Duan, J.; Guo, C. Femtosecond Laser-Induced Periodic Surface Structural Formation on Sapphire with Nanolayered Gold Coating. Appl. Phys. A 2016, 122, 834. [Google Scholar] [CrossRef]
- Alamri, S.; Fraggelakis, F.; Kunze, T.; Krupop, B.; Mincuzzi, G.; Kling, R.; Lasagni, A.F. On the Interplay of DLIP and LIPSS Upon Ultra-Short Laser Pulse Irradiation. Materials 2019, 12, 1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gräf, S.; Kunz, C.; Müller, F.A. Formation and Properties of Laser-Induced Periodic Surface Structures on Different Glasses. Materials 2017, 10, 933. [Google Scholar] [CrossRef] [Green Version]
- Gnilitskyi, I.; Derrien, T.J.-Y.; Levy, Y.; Bulgakova, N.M.; Mocek, T.; Orazi, L. High-Speed Manufacturing of Highly Regular Femtosecond Laser-Induced Periodic Surface Structures: Physical Origin of Regularity. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lasagni, A.F. Laser Interference Patterning Methods: Possibilities for High-Throughput Fabrication of Periodic Surface Patterns. Adv. Opt. Tech. 2017, 6, 265–275. [Google Scholar] [CrossRef]
- Indrišiūnas, S.; Voisiat, B.; Gedvilas, M.; Račiukaitis, G. New Opportunities for Custom-Shape Patterning Using Polarization Control in Confocal Laser Beam Interference Setup. J. Laser. Appl. 2017, 29, 011501. [Google Scholar] [CrossRef]
- Lasagni, A.; Mücklich, F. FEM Simulation of Periodical Local Heating Caused by Laser Interference Metallurgy. J. Mater. Proc. Technol. 2009, 209, 202–209. [Google Scholar] [CrossRef]
- Gachot, C.; Catrin, R.; Lasagni, A.; Schmid, U.; Mücklich, F. Comparative Study of Grain Sizes and Orientation in Microstructured Au, Pt and W Thin Films Designed by Laser Interference Metallurgy. Appl. Surf. Sci. 2009, 255, 5626–5632. [Google Scholar] [CrossRef]
- Daniel, C.; Lasagni, A.; Mücklich, F. Stress and Texture Evolution of Ni/Al Multi-Film by Laser Interference Irradiation. Surf. Coat. Technol. 2004, 180–181, 478–482. [Google Scholar] [CrossRef]
- Kawamura, K.; Sarukura, N.; Hirano, M.; Hosono, H. Holographic Encoding of Permanent Gratings Embedded in Diamond by Two Beam Interference of a Single Femtosecond Near-Infrared Laser Pulse. Jpn. J. Appl. Phys. 2000, 39, L767. [Google Scholar] [CrossRef]
- Kawamura, K.; Ogawa, T.; Sarukura, N.; Hirano, M.; Hosono, H. Fabrication of Surface Relief Gratings on Transparent Dielectric Materials by Two-Beam Holographic Method Using Infrared Femtosecond Laser Pulses. Appl. Phys. B 2000, 71, 119–121. [Google Scholar] [CrossRef]
- Hosono, H.; Kawamura, K.; Matsuishi, S.; Hirano, M. Holographic Writing of Micro-Gratings and Nanostructures on Amorphous SiO2 by near Infrared Femtosecond Pulses. Nucl. Instrum. Methods B 2002, 191, 89–97. [Google Scholar] [CrossRef]
- Lasagni, A.F.; Roch, T.; Berger, J.; Kunze, T.; Lang, V.; Beyer, E. To Use or Not to Use (Direct Laser Interference Patterning), That Is the Question. In Proceedings of the SPIE 9351, Laser-based Micro- and Nanoprocessing IX, San Francisco, CA, USA, 10–12 February 2015; p. 935115. [Google Scholar]
- Rubin, M. Optical Properties of Soda Lime Silica Glasses. Sol. Energy Mater. 1985, 12, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Bonse, J.; Höhm, S.; Kirner, S.V.; Rosenfeld, A.; Krüger, J. Laser-Induced Periodic Surface Structures—A Scientific Evergreen. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 9000615. [Google Scholar] [CrossRef]
- Bonse, J.; Krüger, J.; Höhm, S.; Rosenfeld, A. Femtosecond Laser-Induced Periodic Surface Structures. J. Laser Appl. 2012, 24, 042006. [Google Scholar] [CrossRef]
- Cheng, G.; Mishchik, K.; Mauclair, C.; Audouard, E.; Stoian, R. Ultrafast Laser Photoinscription of Polarization Sensitive Devices in Bulk Silica Glass. Opt. Express 2009, 17, 9515–9525. [Google Scholar] [CrossRef] [PubMed]
- Mishchik, K.; Cheng, G.; Huo, G.; Burakov, I.M.; Mauclair, C.; Mermillod-Blondin, A.; Rosenfeld, A.; Ouerdane, Y.; Boukenter, A.; Parriaux, O.; et al. Nanosize Structural Modifications with Polarization Functions in Ultrafast Laser Irradiated Bulk Fused Silica. Opt. Express 2010, 18, 24809–24824. [Google Scholar] [CrossRef] [PubMed]
- Soileau, M. Ripple Structures Associated with Ordered Surface Defects in Dielectrics. IEEE J. Quantum Electron. 1984, 20, 464–467. [Google Scholar] [CrossRef]
- Sun, M.; Eppelt, U.; Russ, S.; Hartmann, C.; Siebert, C.; Zhu, J.; Schulz, W. Laser Ablation Mechanism of Transparent Dielectrics with Picosecond Laser Pulses. In Proceedings of the Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 23–26 September 2012; International Society for Optics and Photonics: Boulder, CO, USA, 2012; Volume 8530, p. 853007. [Google Scholar]
- Aguilar-Morales, A.I.; Alamri, S.; Kunze, T.; Lasagni, A.F. Influence of Processing Parameters on Surface Texture Homogeneity Using Direct Laser Interference Patterning. Opt. Laser Technol. 2018, 107, 216–227. [Google Scholar] [CrossRef]
- Drelich, J.; Chibowski, E.; Meng, D.D.; Terpilowski, K. Hydrophilic and Superhydrophilic Surfaces and Materials. Soft Matter 2011, 7, 9804–9828. [Google Scholar] [CrossRef]
- Lee, S.J.; Ha, N.; Kim, H. Superhydrophilic–Superhydrophobic Water Harvester Inspired by Wetting Property of Cactus Stem. ACS Sustain. Chem. Eng. 2019, 7, 10561–10569. [Google Scholar] [CrossRef]
- Son, H.H.; Seo, G.H.; Jeong, U.; Kim, S.J. Capillary Wicking Effect of a Cr-Sputtered Superhydrophilic Surface on Enhancement of Pool Boiling Critical Heat Flux. Int. J. Heat Mass Transf. 2017, 113, 115–128. [Google Scholar] [CrossRef]
- Si, Y.; Dong, Z.; Jiang, L. Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials. ACS Cent. Sci. 2018, 4, 1102–1112. [Google Scholar] [CrossRef] [PubMed]
- Ran, C.; Ding, G.; Liu, W.; Deng, Y.; Hou, W. Wetting on Nanoporous Alumina Surface: Transition between Wenzel and Cassie States Controlled by Surface Structure. Langmuir 2008, 24, 9952–9955. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Wolansky, G.; Marmur, A. Apparent Contact Angles on Rough Surfaces: The Wenzel Equation Revisited. Colloid Surf. A 1999, 156, 381–388. [Google Scholar] [CrossRef]
- Joanny, J.F.; De Gennes, P.-G. A Model for Contact Angle Hysteresis. J. Chem. Phys. 1984, 81, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Leroy, F.; Müller-Plathe, F. Rationalization of the Behavior of Solid- Liquid Surface Free Energy of Water in Cassie and Wenzel Wetting States on Rugged Solid Surfaces at the Nanometer Scale. Langmuir 2011, 27, 637–645. [Google Scholar] [CrossRef]
- Marmur, A.; Bittoun, E. When Wenzel and Cassie Are Right: Reconciling Local and Global Considerations. Langmuir 2009, 25, 1277–1281. [Google Scholar] [CrossRef]
- Erbil, H.Y.; Cansoy, C.E. Range of Applicability of the Wenzel and Cassie- Baxter Equations for Superhydrophobic Surfaces. Langmuir 2009, 25, 14135–14145. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Kim, S.-C.; Lee, H.J.; Oh, K.H.; Moon, M.-W. Extreme Wettability of Nanostructured Glass Fabricated by Non-Lithographic, Anisotropic Etching. Sci. Rep. 2015, 5, 9362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostal, E.; Stroj, S.; Kasemann, S.; Matylitsky, V.; Domke, M. Fabrication of Biomimetic Fog-Collecting Superhydrophilic–Superhydrophobic Surface Micropatterns Using Femtosecond Lasers. Langmuir 2018, 34, 2933–2941. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.; Morganstein, B.; Kunkel, A.; Surwade, S.P.; et al. Effect of Airborne Contaminants on the Wettability of Supported Graphene and Graphite. Nat. Mater. 2013, 12, 925–931. [Google Scholar] [CrossRef]
- Kurokawa, A.; Odaka, K.; Azuma, Y.; Fujimoto, T.; Kojima, I. Diagnosis and Cleaning of Carbon Contamination on SiO2 Thin Film. J. Surf. Anal. 2009, 15, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.J.; Lindley, P.M. Analysis of Organic Contamination in Semiconductor Processing. In Proceedings of the AIP Conference Proceedings, Bellaire, MI, USA, 23–27 June 1998; Volume 449, pp. 133–139. [Google Scholar] [CrossRef]
- Shinozaki, A.; Arima, K.; Morita, M.; Kojima, I.; Azuma, Y. FTIR-ATR Evaluation of Organic Contaminant Cleaning Methods for SiO2 Surfaces. Anal. Sci. 2003, 19, 1557–1559. [Google Scholar] [CrossRef] [Green Version]
- Hecht, E. Optics, 4th ed.; Addison Wesley: Essex, UK, 2001; pp. 476–479. [Google Scholar]
- Goodman, J.W. Introduction to Fourier Optics, 2nd ed.; McGraw-Hill: New York, NY, USA, 1996; pp. 81–83. [Google Scholar]
Parameter | Line-Like Textures | Dot-Like Textures | |||
---|---|---|---|---|---|
Spatial period [µm] | 2.3 | 3.9 | 9.0 | 2.3 | 4.7 |
Spot size [µm] | 74 | 52 | 54 | 45 | |
Hatch [µm] | 23.0 | 15.6 | 18.0 | 16.5 | 13.4 |
Fluence [J/cm2] | 2.16–2.44 | 1.77–2.36 | 4.88–5.14 | 3.77–3.90 | 2.67–3.71 |
Number of pulses | 10–15 | 8–13 | 7–12 | 5–7 | 2–6 |
Repetition rate [kHz] | 10 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldera, M.; Alamri, S.; Sürmann, P.A.; Kunze, T.; Lasagni, A.F. Microfabrication and Surface Functionalization of Soda Lime Glass through Direct Laser Interference Patterning. Nanomaterials 2021, 11, 129. https://doi.org/10.3390/nano11010129
Soldera M, Alamri S, Sürmann PA, Kunze T, Lasagni AF. Microfabrication and Surface Functionalization of Soda Lime Glass through Direct Laser Interference Patterning. Nanomaterials. 2021; 11(1):129. https://doi.org/10.3390/nano11010129
Chicago/Turabian StyleSoldera, Marcos, Sabri Alamri, Paul Alexander Sürmann, Tim Kunze, and Andrés Fabián Lasagni. 2021. "Microfabrication and Surface Functionalization of Soda Lime Glass through Direct Laser Interference Patterning" Nanomaterials 11, no. 1: 129. https://doi.org/10.3390/nano11010129
APA StyleSoldera, M., Alamri, S., Sürmann, P. A., Kunze, T., & Lasagni, A. F. (2021). Microfabrication and Surface Functionalization of Soda Lime Glass through Direct Laser Interference Patterning. Nanomaterials, 11(1), 129. https://doi.org/10.3390/nano11010129