Multiscale Numerical Modeling for Prediction of Piezoresistive Effect for Polymer Composites with a Highly Segregated Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Nanocomposite Processing
2.2.2. Methods of Investigation
2.2.3. Numerical Modeling
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tallman, T.; Wang, K.W. An arbitrary strains carbon nanotube composite piezoresistivity model for finite element integration. Appl. Phys. Lett. 2013, 102, 011909. [Google Scholar] [CrossRef]
- Flandin, L.; Cavaille, J.Y.; Brechet, Y.; Dendievel, R. Characterization of the damage in nanocomposite materials by a.c. electrical properties: Experiment and simulation. J. Mater. Sci. 1999, 34, 1753–1759. [Google Scholar] [CrossRef]
- Schaefer, D.W.; Justice, R.S. How Nano Are Nanocomposites? Macromolecules 2007, 40, 8501–8517. [Google Scholar] [CrossRef]
- Flandin, L.; Brechet, Y.; Canova, G.R.R.; Cavaille, J.Y.; Bréchet, Y.; Canova, G.R.R.; Cavaillé, J.Y. AC electrical properties as a sensor of the microstructural evolution in nanocomposite materials: Experiment and simulation. Model. Simul. Mater. Sci. Eng. 1999, 7, 865. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, M.; Xu, H.; Liao, Y.; Duan, F.; Zhou, L.; Jin, H.; Zhang, Z.; Su, Z. Ultra-broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites. Carbon N. Y. 2017, 121, 490–501. [Google Scholar] [CrossRef]
- Mičušík, M.; Georgousis, G.; Omastová, M.; Kontou, E.; Pissis, P.; Kyritsis, A. Piezoresistivity of conductive polymer nanocomposites: Experiment and modeling. J. Reinf. Plast. Compos. 2018, 37, 1085–1098. [Google Scholar]
- Böger, L.; Wichmann, M.H.G.; Meyer, L.O.; Schulte, K. Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos. Sci. Technol. 2008, 68, 1886–1894. [Google Scholar] [CrossRef] [Green Version]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory, 2nd ed.; Taylor & Francis: London, UK, 1992. [Google Scholar]
- Kalaitzidou, K.; Fukushima, H.; Drzal, L.T. A route for polymer nanocomposites with engineered electrical conductivity and percolation threshold. Materials 2010, 3, 1089–1103. [Google Scholar] [CrossRef]
- Pang, H.; Xu, L.; Yan, D.X.; Li, Z.M. Conductive polymer composites with segregated structures. Prog. Polym. Sci. 2014, 39, 1908–1933. [Google Scholar] [CrossRef]
- Li, J.; Kim, J.K. Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 2007, 67, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Clingerman, M.L.; King, J.A.; Schulz, K.H.; Meyers, J.D. Evaluation of electrical conductivity models for conductive polymer composites. J. Appl. Polym. Sci. 2002, 83, 1341–1356. [Google Scholar] [CrossRef]
- Castellino, M.; Rovere, M.; Shahzad, M.I.; Tagliaferro, A. Conductivity in carbon nanotube polymer composites: A comparison between model and experiment. Compos. Part A Appl. Sci. Manuf. 2016, 87, 237–242. [Google Scholar] [CrossRef]
- Jogi, B.F. Dispersion and Performance Properties of Carbon Nanotubes (CNTs) Based Polymer Composites: A Review. J. Encapsul. Adsorpt. Sci. 2012, 2, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Pegel, S.; Pötschke, P.; Petzold, G.; Alig, I.; Dudkin, S.M.; Lellinger, D. Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 2008, 49, 974–984. [Google Scholar] [CrossRef]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Šupová, M.; Martynková, G.S.; Barabaszová, K. Effect of Nanofillers Dispersion in Polymer Matrices: A Review. Sci. Adv. Mater. 2011, 3, 1–25. [Google Scholar] [CrossRef]
- Panamoottil, S.M.; Pötschke, P.; Lin, R.J.T.; Bhattacharyya, D.; Fakirov, S. Conductivity of microfibrillar polymer-polymer composites with CNT-loaded microfibrils or compatibilizer: A comparative study. Express Polym. Lett. 2013, 7, 607–620. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, O.V.; Ozerin, A.N.; Kechek, A.S.; Shevchenko, V.G.; Kurkin, T.S.; Golubev, E.K.; Karpushkin, E.A.; Sergeyev, V.G.; Kechek’yan, A.S.; Shevchenko, V.G.; et al. A study of oriented conductive composites with segregated network structure obtained via solid-state processing of UHMWPE reactor powder and carbon nanofillers. Polym. Compos. 2019, 40, E146–E155. [Google Scholar] [CrossRef]
- Lisunova, M.O.; Mamunya, Y.P.; Lebovka, N.I.; Melezhyk, A.V. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur. Polym. J. 2007, 43, 949–958. [Google Scholar] [CrossRef]
- Ozerin, A.N.; Ivanchev, S.S.; Chvalun, S.N.; Aulov, V.A.; Ivancheva, N.I.; Bakeev, N.F. Properties of oriented film tapes prepared via solid-state processing of a nascent ultrahigh-molecular-weight polyethylene reactor powder synthesized with a postmetallocene catalyst. Polym. Sci. Ser. A 2012, 54, 950–954. [Google Scholar] [CrossRef]
- Kechek’yan, A.S.; Mikhailik, E.S.; Monakhova, K.Z.; Kurkin, T.S.; Gritsenko, O.T.; Beshenko, M.A.; Ozerin, A.N. Effect of preliminary compression and uniform shear on the deformation behavior of a filled polymer nanocomposite in orientation stretching. Dokl. Chem. 2013, 449, 94–97. [Google Scholar] [CrossRef]
- Du, F.; Fischer, J.E.; Winey, K.I. Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 72, 121404. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.M.; Loh, K.J.; Burton, A.R.; Loyola, B.R. Modeling the electromechanical and strain response of carbon nanotube-based nanocomposites. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. Int. Soc. Opt. Photonics 2014, 9061, 906117. [Google Scholar]
- Taherian, R. Development of an Equation to Model Electrical Conductivity of Polymer-Based Carbon Nanocomposites. ECS J. Solid State Sci. Technol. 2014, 3, M26–M38. [Google Scholar] [CrossRef]
- Dalmas, F.; Dendievel, R.; Chazeau, L.; Cavaillé, J.Y.; Gauthier, C. Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks. Acta Mater. 2006, 54, 2923–2931. [Google Scholar] [CrossRef]
- Song, W.; Krishnaswamy, V.; Pucha, R.V. Computational homogenization in RVE models with material periodic conditions for CNT polymer composites. Compos. Struct. 2016, 137, 9–17. [Google Scholar] [CrossRef]
- Xu, S.; Rezvanian, O.; Zikry, M.A. Electrothermomechanical Modeling and Analyses of Carbon Nanotube Polymer Composites. J. Eng. Mater. Technol. 2013, 135, 021014. [Google Scholar] [CrossRef]
- Zeng, Q.H.; Yu, A.B.; Lu, G.Q. Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 2008, 33, 191–269. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Rafiee, R. On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos. Struct. 2010, 92, 647–652. [Google Scholar] [CrossRef]
- Romanov, V.S.; Lomov, S.V.; Verpoest, I.; Gorbatikh, L. Modelling evidence of stress concentration mitigation at the micro-scale in polymer composites by the addition of carbon nanotubes. Carbon N. Y. 2015, 82, 184–194. [Google Scholar] [CrossRef]
- Romanov, V.S.; Lomov, S.V.; Verpoest, I.; Gorbatikh, L. Stress magnification due to carbon nanotube agglomeration in composites. Compos. Struct. 2015, 133, 246–256. [Google Scholar] [CrossRef]
- Spanos, P.; Elsbernd, P.; Ward, B.; Koenck, T. Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2013, 371, 20120494. [Google Scholar] [CrossRef]
- Lebedev, O.V.; Trofimov, A.; Abaimov, S.G.; Ozerin, A.N. Modeling of an effect of uniaxial deformation on electrical conductance of polypropylene-based composites filled with agglomerated nanoparticles. Int. J. Eng. Sci. 2019, 144, 103132. [Google Scholar] [CrossRef]
- Lebedev, O.V.; Abaimov, S.G.; Ozerin, A.N. Modeling the effect of uniaxial deformation on electrical conductivity for composite materials with extreme filler segregation. J. Compos. Mater. 2020, 54, 299–309. [Google Scholar] [CrossRef]
- Romanov, V.; Lomov, S.V.; Verpoest, I.; Gorbatikh, L. Inter-fiber stresses in composites with carbon nanotube grafted and coated fibers. Compos. Sci. Technol. 2015, 114, 79–86. [Google Scholar] [CrossRef]
- Nanocyl. Available online: https://www.nanocyl.com/product/nc7000/ (accessed on 25 November 2020).
- Tuball. Available online: https://tuball.com/en/about-tuball (accessed on 25 November 2020).
- Lu, W.; Chou, T.W.; Thostenson, E.T. A three-dimensional model of electrical percolation thresholds in carbon nanotube-based composites. Appl. Phys. Lett. 2010, 96, 10–13. [Google Scholar] [CrossRef]
- Lee, H.S.; Yun, C.H.; Kim, H.M.; Lee, C.J. Persistence length of multiwalled carbon nanotubes with static bending. J. Phys. Chem. C 2007, 111, 18882–18887. [Google Scholar] [CrossRef]
- Liu, Y.J.; Chen, X.L. Continuum Models of Carbon Nanotube-Based Composites Using the Boundary Element Method. Electron. J. Bound. Elem. 2003, 1, 316–335. [Google Scholar] [CrossRef] [Green Version]
- Derosa, P.A.; Michalak, T. Polymer-Mediated Tunneling Transport Between Carbon Nanotubes in Nanocomposites. J. Nanosci. Nanotechnol. 2014, 14, 3696–3702. [Google Scholar] [CrossRef]
- Gau, C.; Kuo, C.-Y.; Ko, H.S. Electron tunneling in carbon nanotube composites. Nanotechnology 2009, 20, 395705. [Google Scholar] [CrossRef] [PubMed]
Parameter | Method of Testing | Value |
---|---|---|
Specific area, m2/g | Brunauer–Emmett–Teller | 250–300 |
Purity, % | Thermogravimetric analysis | 90 |
Average diameter, nm | Scanning electron microscopy | 9.5 |
Average length, nm | Scanning electron microscopy | 1500 |
Metal content, % | Inductively coupled plasma mass spectrometry | <1 |
Resistivity, Ω∙cm | Powder conductivity measurements | 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedev, O.V.; Ozerin, A.N.; Abaimov, S.G. Multiscale Numerical Modeling for Prediction of Piezoresistive Effect for Polymer Composites with a Highly Segregated Structure. Nanomaterials 2021, 11, 162. https://doi.org/10.3390/nano11010162
Lebedev OV, Ozerin AN, Abaimov SG. Multiscale Numerical Modeling for Prediction of Piezoresistive Effect for Polymer Composites with a Highly Segregated Structure. Nanomaterials. 2021; 11(1):162. https://doi.org/10.3390/nano11010162
Chicago/Turabian StyleLebedev, Oleg V., Alexander N. Ozerin, and Sergey G. Abaimov. 2021. "Multiscale Numerical Modeling for Prediction of Piezoresistive Effect for Polymer Composites with a Highly Segregated Structure" Nanomaterials 11, no. 1: 162. https://doi.org/10.3390/nano11010162
APA StyleLebedev, O. V., Ozerin, A. N., & Abaimov, S. G. (2021). Multiscale Numerical Modeling for Prediction of Piezoresistive Effect for Polymer Composites with a Highly Segregated Structure. Nanomaterials, 11(1), 162. https://doi.org/10.3390/nano11010162