1,1′-Bis(diphenylphosphino)ferrocene Platinum(II) Complexes as a Route to Functionalized Multiporphyrin Systems
Abstract
:1. Introduction
2. Materials and Methods
Instrumentation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Drain, C.M.; Varotto, A.; Radivojevic, I. Self-Organized Porphyrinic Materials. Chem. Rev. 2009, 109, 1630–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutzen, A. Supramolecular Organization of pi-Conjugated Oligomers. In Bottom-Up Self-Organization in Supramolecular Soft Matter: Principles and Prototypical Examples of Recent Advances; Muller, S.C., Parisi, J., Eds.; Spinger: London, UK, 2015; Volume 217, pp. 195–236. [Google Scholar]
- Elemans, J.; Van Hameren, R.; Nolte, R.J.M.; Rowan, A.E. Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv. Mater. 2006, 18, 1251–1266. [Google Scholar] [CrossRef]
- Hoeben, F.J.M.; Jonkheijm, P.; Meijer, E.W.; Schenning, A. About supramolecular assemblies of pi-conjugated systems. Chem. Rev. 2005, 105, 1491–1546. [Google Scholar] [CrossRef] [PubMed]
- Milic, T.N.; Chi, N.; Yablon, D.G.; Flynn, G.W.; Batteas, J.D.; Drain, C.M. Controlled hierarchical self-assembly and deposition of nanoscale photonic materials. Angew. Chem. Int. Ed. 2002, 41, 2117–2119. [Google Scholar] [CrossRef]
- Gianferrara, T.; Serli, B.; Zangrando, E.; Iengo, E.; Alessio, E. Pyridylporphyrins peripherally coordinated to ruthenium-nitrosyls, including the water-soluble Na-4 Zn center dot 4′ TPyP{RuCl4(NO)}4: Synthesis and structural characterization. New J. Chem. 2005, 29, 895–903. [Google Scholar] [CrossRef]
- Iengo, E.; Zangrando, E.; Minatel, R.; Alessio, E. Metallacycles of porphyrins as building blocks in the construction of higher order assemblies through axial coordination of bridging ligands: Solution- and solid-state characterization of molecular sandwiches and molecular wires. J. Am. Chem. Soc. 2002, 124, 1003–1013. [Google Scholar] [CrossRef]
- Iengo, E.; Milani, B.; Zangrando, E.; Geremia, S.; Alessio, E. Novel Ruthenium Building Blocks for the Efficient Modular Construction of Heterobimetallic Molecular Squares of Porphyrins. Angew. Chem. Int. Ed. 2000, 39, 1096–1099. [Google Scholar] [CrossRef]
- Alessio, E.; Ciani, E.; Iengo, E.; Kukushkin, V.Y.; Marzilli, L.G. Stepwise assembly of unsymmetrical supramolecular arrays containing porphyrins and coordination compounds. Inorg. Chem. 2000, 39, 1434–1443. [Google Scholar] [CrossRef]
- Prodi, A.; Indelli, M.T.; Kleverlaan, C.J.; Scandola, F.; Alessio, E.; Gianferrara, T.; Marzilli, L.G. Side-to-face ruthenium porphyrin arrays: Photophysical behavior of dimeric and pentameric systems. Chem. Eur. J. 1999, 5, 2668–2679. [Google Scholar] [CrossRef]
- Naik, A.; Rubbiani, R.; Gasser, G.; Spingler, B. Visible-Light-Induced Annihilation of Tumor Cells with Platinum-Porphyrin Conjugates. Angew. Chem. Int. Ed. 2014, 53, 6938–6941. [Google Scholar] [CrossRef]
- Maran, U.; Britt, D.; Fox, C.B.; Harris, J.M.; Orendt, A.M.; Conley, H.; Davis, R.; Hlady, V.; Stang, P.J. Self-Assembly of a Triangle-Shaped, Hexaplatinum-Incorporated, Supramolecular Amphiphile in Solution and at Interfaces. Chem. Eur. J. 2009, 15, 8566–8577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suijkerbuijk, B.; Gebbink, R. Merging porphyrins with organometallics: Synthesis and applications. Angew. Chem. Int. Ed. 2008, 47, 7396–7421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cocca, L.H.Z.; Gotardo, F.; Sciuti, L.F.; Acunha, T.V.; Iglesias, B.A.; de Boni, L. Investigation of excited singlet state absorption and intersystem crossing mechanism of isomeric meso-tetra(pyridyl)porphyrins containing peripheral polypyridyl platinum(II) complexes. Chem. Phys. Lett. 2018, 708, 1–10. [Google Scholar] [CrossRef]
- Tong, K.-C.; Hu, D.; Wan, P.-K.; Lok, C.-N.; Che, C.-M. Chapter Three—Anti-cancer gold, platinum and iridium compounds with porphyrin and/or N-heterocyclic carbene ligand(s). In Advances in Inorganic Chemistry; Sadler, P.J., van Eldik, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 75, pp. 87–119. [Google Scholar]
- Cao, Q.; Cao, Q.; Ding, Y.L.; Zhong, Y.F.; Mu, G.; Qin, P.Z.; Ji, L.N.; Mao, Z.W. Platinum(II) clovers targeting G-quadruplexes and their anticancer activities. Dalton Trans. 2015, 44, 50–53. [Google Scholar] [CrossRef]
- Yao, S.; Chen, L.; Jia, F.; Sun, X.; Su, H.; Liu, H.; Yang, L.; Wang, Z.; Wu, F.; Wang, K. Platinated porphyrin tailed with folic acid conjugate for cell-targeted photodynamic activity. J. Lumin. 2019, 214, 116552. [Google Scholar] [CrossRef]
- Volostnykh, M.V.; Borisov, S.M.; Konovalov, M.A.; Sinelshchikova, A.A.; Gorbunova, Y.G.; Tsivadze, A.Y.; Meyer, M.; Stern, C.; Bessmertnykh-Lemeune, A. Platinum(II) and palladium(II) complexes with electron-deficient meso-diethoxyphosphorylporphyrins: Synthesis, structure and tuning of photophysical properties by varying peripheral substituents. Dalton Trans. 2019, 48, 8882–8898. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Ogawa, K.; Li, S.; Kiwada, T.; Odani, A. A Platinum Functional Porphyrin Conjugate: An Excellent Cancer Killer for Photodynamic Therapy. Bull. Chem. Soc. Jpn. 2019, 92, 790–796. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, N.; Cheng, S.-C.; Xu, K.; Deng, Z.; Chen, S.; Xu, Z.; Xie, K.; Tse, M.-K.; Shi, P.; et al. Phorbiplatin, a Highly Potent Pt(IV) Antitumor Prodrug That Can Be Controllably Activated by Red Light. Chem 2019, 5, 3151–3165. [Google Scholar] [CrossRef]
- Scolaro, L.M.; Donato, C.; Castriciano, M.; Romeo, A.; Romeo, R. Micellar aggregates of platinum(II) complexes containing porphyrins. Inorg. Chim. Acta 2000, 300, 978–986. [Google Scholar] [CrossRef]
- Castriciano, M.; Romeo, A.; Romeo, R.; Scolaro, L.M. Mesoscopic globular self-assemblies of platinum(II) complexes containing porphyrins. Eur. J. Inorg. Chem. 2002, 531–534. [Google Scholar] [CrossRef]
- Scolaro, L.M.; Plutino, M.R.; Romeo, A.; Romeo, R.; Ricciardi, G.; Belviso, S.; Albinati, A. Platinum(II) complexes bearing 1,1′-bis(diphenylphosphino)ferrocene as building blocks for functionalized redox active porphyrins. Dalton Trans. 2006, 2551–2559. [Google Scholar] [CrossRef] [PubMed]
- Plutino, M.R.; Castriciano, M.A.; Mazzaglia, A.; Saporita, M.; Romeo, A.; Scolaro, L.M. Synthesis and aggregation behavior of a novel water-soluble porphyrin platinum(II) terpyridine complex. J. Porphyr. Phthalocyanines 2011, 15, 1052–1061. [Google Scholar] [CrossRef]
- Chaves, O.A.; Acunha, T.V.; Iglesias, B.A.; Jesus, C.S.H.; Serpa, C. Effect of peripheral platinum(II) bipyridyl complexes on the interaction of tetra-cationic porphyrins with human serum albumin. J. Mol. Liq. 2020, 301, 112466. [Google Scholar] [CrossRef]
- Romeo, R.; Scolaro, L.M.; Nastasi, N.; Arena, G. Rates of dimethyl sulfoxide exchange in monoalkyl cationic platinum(II) complexes containing nitrogen bidentate ligands. A proton NMR study. Inorg. Chem. 1996, 35, 5087–5096. [Google Scholar] [CrossRef] [PubMed]
- Štĕpnička, P. Ferrocenes: Ligands, Materials and Biomolecules; John Wiley & Sons, Ltd.: Chichester, UK, 2008. [Google Scholar]
- Teo, P.; Koh, L.L.; Andy Hor, T.S. Spacer-Directed Coordination Polymers-of-Oligomers (POLO) of Silver. Inorg. Chem. 2008, 47, 9561–9568. [Google Scholar] [CrossRef]
- Togni, A.; Hayashi, T. Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science; VCH, Verlagsgesellschaft: Weinheim, Germany, 1995. [Google Scholar]
- Ares, R.; López-Torres, M.; Fernández, A.; Pereira, M.T.; Alberdi, G.; Vázquez-García, D.; Fernández, J.J.; Vila, J.M. Functionalized cyclopalladated compounds with bidentate Group 15 donor atom ligands: The crystal and molecular structures of [{Pd[5 -(COH)C6H3C(H)NCy-C2,N](Cl)}2(μ-Ph2PRPPh2)] (R=CH2CH2, Fe(C5H4)2], [Pd{5-(COH)C6H3C(H)NCy-C2,N}(Ph2PCH2PPh2-P,P)][PF6] and [Pd{5-(COH)C6H3C(H)N(Cy)-C2,N}(Ph2PCH2CH2AsPh2-P,As)][PF6]. J. Organomet. Chem. 2003, 665, 76–86. [Google Scholar] [CrossRef]
- Evans, R.C.; Douglas, P.; Winscom, C.J. Coordination complexes exhibiting room-temperature phosphorescence: Evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord. Chem. Rev. 2006, 250, 2093–2126. [Google Scholar] [CrossRef]
- Jamali, S.; Nabavizadeh, S.M.; Rashidi, M. Binuclear Cyclometalated Organoplatinum Complexes Containing 1,1′-Bis(diphenylphosphino)ferrocene as Spacer Ligand: Kinetics and Mechanism of MeI Oxidative Addition. Inorg. Chem. 2008, 47, 5441–5452. [Google Scholar] [CrossRef]
- Lu, W.; Mi, B.X.; Chan, M.C.W.; Hui, Z.; Che, C.M.; Zhu, N.; Lee, S.T. Light-Emitting Tridentate Cyclometalated Platinum(II) Complexes Containing σ-Alkynyl Auxiliaries: Tuning of Photo- and Electrophosphorescence. J. Am. Chem. Soc. 2004, 126, 4958–4971. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamamoto, Y. Reaction of di-μ-dichloro-bis(N,N-dimethylbenzylamine-C2,N)dipalladium(II) with diphosphines. Six-membered ring complexes bearing spiro rings. Inorg. Chim. Acta 2000, 299, 164–171. [Google Scholar] [CrossRef]
- Ravindranathan, D.; Vezzu, D.A.K.; Bartolotti, L.; Boyle, P.D.; Huo, S. Improvement in Phosphorescence Efficiency through Tuning of Coordination Geometry of Tridentate Cyclometalated Platinum(II) Complexes. Inorg. Chem. 2010, 49, 8922–8928. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Shigeta, H.; Sekino, M.; Akabori, S. Synthesis, some reactions, and molecular structure of the Pd(BF4)2 complex of 1,1′-bis(diphenylphosphino)ferrocene. J. Organomet. Chem. 1993, 458, 199–204. [Google Scholar] [CrossRef]
- Smith, D.C.; Haar, C.M.; Stevens, E.D.; Nolan, S.P. Synthetic, Structural, and Solution Calorimetric Studies of Pt(CH3)2(PP) Complexes. Organometallics 2000, 19, 1427–1433. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, H.; Barron, P.M. Binuclear Cyclometalated Platinum(II) 4,6-Diphenyl-2,2′-bipyridine Complexes: Interesting Photoluminescent and Optical Limiting Materials. Chem. Mater. 2006, 18, 2602–2610. [Google Scholar] [CrossRef]
- Thorn, D.L.; Fultz, W.C. Rhodamine complexes. Preparation, and photophysical properties, and the structure of [Rh(rhodamine)(CO)(P(tol)3)2][SbF6]. J. Phys. Chem. 1989, 93, 1234–1243. [Google Scholar] [CrossRef]
- Wilson, J.J.; Fedoce Lopes, J.; Lippard, S.J. Synthesis, Characterization, and Photophysical Properties of Three Platinum(II) Complexes Bearing Fluorescent Analogues of the Di-2-pyridylmethane Ligand. Inorg. Chem. 2010, 49, 5303–5315. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.Y.; He, Z.; So, S.K.; Tong, K.L.; Lin, Z. A Multifunctional Platinum-Based Triplet Emitter for OLED Applications. Organometallic 2005, 24, 4079–4082. [Google Scholar] [CrossRef]
- Bandoli, G.; Dolmella, A. Ligating ability of 1,1′-bis(diphenylphosphino)ferrocene: A structural survey (1994–1998). Coord. Chem. Rev. 2000, 209, 161–196. [Google Scholar] [CrossRef]
- Shahsavari, H.R.; Rashidi, M.; Nabavizadeh, S.M.; Habibzadeh, S.; Heinemann, F.W. A Tetramethylplatinum(IV) Complex with 1,1′-Bis(diphenylphosphanyl)ferrocene Ligands: Reaction with Trifluoroacetic Acid. Eur. J. Inorg. Chem. 2009, 3814–3820. [Google Scholar] [CrossRef]
- Appleton, T.G.; Clark, H.C.; Manzer, L.E. Trans-influence—Its measurement and significance. Coord. Chem. Rev. 1973, 10, 335–422. [Google Scholar] [CrossRef]
- Leininger, S.; Olenyuk, B.; Stang, P.J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev. 2000, 100, 853–907. [Google Scholar] [CrossRef] [PubMed]
- Lensen, M.C.; Castriciano, M.; Coumans, R.G.E.; Foekema, J.; Rowan, A.E.; Scolaro, L.M.; Nolte, R.J.M. Hexakis (pyridyl-functionalised porphyrinato)benzene as a building block for the construction of multi-chromophoric arrays. Tetrahedron Lett. 2002, 43, 9351–9355. [Google Scholar] [CrossRef]
- Bucher, C.; Devillers, C.H.; Moutet, J.C.; Royal, G.; Saint-Aman, E. Ferrocene-appended porphyrins: Syntheses and properties. Coord. Chem. Rev. 2009, 253, 21–36. [Google Scholar] [CrossRef]
- Gust, D.; Moore, T.A.; Moore, A.L. Molecular mimicry of photosynthetic energy and electron transfer. Acc. Chem. Res. 1993, 26, 198–205. [Google Scholar] [CrossRef]
- Wasielewski, M.R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 1992, 92, 435–461. [Google Scholar] [CrossRef]
- Bard, A.J. Electron transfer branches out. Nature 1995, 374, 13. [Google Scholar] [CrossRef]
- Heath, J.R.; Kuekes, P.J.; Snider, G.S.; Williams, R.S. A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology. Science 1998, 280, 1716–1721. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jung, G.-Y.; Ohlberg, D.A.A.; Li, X.; Stewart, D.R.; Jeppesen, J.O.; Nielsen, K.A.; Stoddart, J.F.; Williams, R.S. Nanoscale molecular-switch crossbar circuits. Nanotechnology 2003, 14, 462–468. [Google Scholar] [CrossRef]
- Liu, Z.; Yasseri, A.A.; Lindsey, J.S.; Bocian, D.F. Molecular Memories that Survive Silicon Device Processing and Real-World Operation. Science 2003, 302, 1543–1545. [Google Scholar] [CrossRef] [Green Version]
- Matsushige, K.; Yamada, H.; Tada, H.; Horiuchi, T.; Chen, X.Q. Nanoscopic Molecular Memories. Ann. N. Y. Acad. Sci. 1998, 852, 290–305. [Google Scholar] [CrossRef]
- Beer, P.D.; Gale, P.A.; Chen, G.Z. Mechanisms of electrochemical recognition of cations, anions and neutral guest species by redox-active receptor molecules. Coord. Chem. Rev. 1999, 185–186, 3–36. [Google Scholar] [CrossRef]
- Biemans, H.A.M.; Rowan, A.E.; Verhoeven, A.; Vanoppen, P.; Latterini, L.; Foekema, J.; Schenning, A.; Meijer, E.W.; de Schryver, F.C.; Nolte, R.J.M. Hexakis porphyrinato benzenes. A new class of porphyrin arrays. J. Am. Chem. Soc. 1998, 120, 11054–11060. [Google Scholar] [CrossRef]
- Sohn, Y.S.; Hendrickson, D.N.; Gray, H.B. Electronic structure of metallocenes. J. Am. Chem. Soc. 1971, 93, 3603–3612. [Google Scholar] [CrossRef]
- Prodi, A.; Kleverlaan, C.J.; Indelli, M.T.; Scandola, F.; Alessio, E.; Iengo, E. Photophysics of Pyridylporphyrin Ru(II) Adducts: Heavy-Atom Effects and Intramolecular Decay Pathways. Inorg. Chem. 2001, 40, 3498–3504. [Google Scholar] [CrossRef] [PubMed]
- Pregosin, P.S. Platinum NMR Spectroscopy. In Annual Reports on NMR Spectroscopy; Webb, G.A., Ed.; Academic Press: Cambridge, MA, USA, 1986; Volume 17, pp. 285–349. [Google Scholar]
- van Hameren, R.; van Buul, A.M.; Castriciano, M.A.; Villari, V.; Micali, N.; Schon, P.; Speller, S.; Scolaro, L.M.; Rowan, A.E.; Elemans, J.A.A.W.; et al. Supramolecular porphyrin polymers in solution and at the solid-liquid interface. Nano Lett. 2008, 8, 253–259. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plutino, M.R.; Romeo, A.; Castriciano, M.A.; Scolaro, L.M. 1,1′-Bis(diphenylphosphino)ferrocene Platinum(II) Complexes as a Route to Functionalized Multiporphyrin Systems. Nanomaterials 2021, 11, 178. https://doi.org/10.3390/nano11010178
Plutino MR, Romeo A, Castriciano MA, Scolaro LM. 1,1′-Bis(diphenylphosphino)ferrocene Platinum(II) Complexes as a Route to Functionalized Multiporphyrin Systems. Nanomaterials. 2021; 11(1):178. https://doi.org/10.3390/nano11010178
Chicago/Turabian StylePlutino, Maria Rosaria, Andrea Romeo, Maria Angela Castriciano, and Luigi Monsù Scolaro. 2021. "1,1′-Bis(diphenylphosphino)ferrocene Platinum(II) Complexes as a Route to Functionalized Multiporphyrin Systems" Nanomaterials 11, no. 1: 178. https://doi.org/10.3390/nano11010178
APA StylePlutino, M. R., Romeo, A., Castriciano, M. A., & Scolaro, L. M. (2021). 1,1′-Bis(diphenylphosphino)ferrocene Platinum(II) Complexes as a Route to Functionalized Multiporphyrin Systems. Nanomaterials, 11(1), 178. https://doi.org/10.3390/nano11010178