Antibacterial Activity of Green-Synthesized Silver Nanoparticles Using Areca catechu Extract against Antibiotic-Resistant Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Medicinal Plants
2.2. AgNP Synthesis Using Various Medicinal Plants
2.3. Optimization of AgNP Synthesis Conditions Using A. catechu Extract
2.4. Characterization of the Synthesized AgNPs
2.5. Well Diffusion Test of the AgNPs
2.6. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of the AgNPs
2.7. Morphology of the Antibiotic-Resistant Bacteria Treated with AgNPs
2.8. Statistical Analysis
3. Results and Discussion
3.1. AgNP Synthesis Using Various Medicinal Plants
3.2. Optimization of AgNP Synthesis Conditions Using Areca catechu Extract
3.3. SEM Image and Particle Size Distribution of the Synthesized AgNPs
3.4. FT-IR Analysis
3.5. Antimicrobial Activity of the Synthesized AgNPs
3.5.1. Well Diffusion Assay
3.5.2. Observation of Antibiotic-Resistant Bacteria Treated with AgNPs Using SEM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banin, E.; Hughes, D.; Kuiors, O.P. Bacterial pathogens, antibiotics and antibiotic resistance. FEMS. Microbiol. Rev. 2017, 41, 450–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front. Microbiol. 2018, 9, 1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, M.; Deshmukh, S.; Ingle, A.; Gade, A. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Nadagouda, M.N.; Błaszczyński, J.; Słowiński, R.; Varma, R.S.; Kirwan, K. A green chemistry-based classification model for the synthesis of silver nanoparticles. Green Chem. 2015, 17, 2825–2839. [Google Scholar] [CrossRef] [Green Version]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2015, 9, 385–406. [Google Scholar]
- Srikar, S.K.; Giri, D.D.; Pal, D.B.; Mishra, P.K.; Upadhyay, S.N. Green Synthesis of Silver Nanoparticles: A Review. Green Sustain. Chem. 2016, 6, 34–56. [Google Scholar] [CrossRef] [Green Version]
- Pimprikar, P.; Joshi, S.; Kumar, A.; Zinjarde, S.; Kulkarni, S. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf. B Biointerfaces 2009, 74, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Lee, J.W.; Shin, U.C.; Lee, M.W.; Kim, D.J.; Kim, S.W. Inhibitory Activity of Silver Nanoparticles Synthesized Using Lycopersicon Esculentum against Biofilm Formation in Candida Species. Nanomaterials 2019, 9, 1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Method for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32. [Google Scholar]
- Quelemes, P.V.; Araruna, F.B.; De Faria, B.E.F.; Kuckelhaus, S.A.; Silva, D.A.; Mendonça, R.Z.; Eiras, C.; Soares, M.J.D.S.; Leite, J.R.S.A. Development and Antibacterial Activity of Cashew Gum-Based Silver Nanoparticles. Int. J. Mol. Sci. 2013, 14, 4969–4981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prathna, T.; Chandrasekaran, N.; Raichur, A.M.; Mukherjee, A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B Biointerfaces 2011, 82, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Paramelle, D.; Sadovoy, A.; Gorelik, S.; Free, P.; Hobley, J.; Fernig, D.G. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 2014, 139, 4855–4861. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Cai, X.; Li, J.; Zheng, M.; Chen, Z.; Yu, C.P. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloid Surf. A 2014, 444, 226–231. [Google Scholar] [CrossRef]
- Kesharwani, J.; Yoon, K.Y.; Hwang, J.; Rai, M. Phytofabrication of Silver Nanoparticles by Leaf Extract of Datura metel: Hypothetical Mechanism Involved in Synthesis. J. Bionanosci. 2009, 3, 39–44. [Google Scholar] [CrossRef]
- Chakravarty, P.; Sarma, N.S.; Sarma, H. Removal of lead (II) from aqueous solution using heartwood of Areca catechu powder. Desalination 2010, 256, 16–21. [Google Scholar] [CrossRef]
- Peng, W.; Liu, Y.-J.; Wu, N.; Sun, T.; He, X.-Y.; Gao, Y.-X.; Wu, C.-J. Areca catechu L. (Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Ethnopharmacol. 2015, 164, 340–356. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef] [Green Version]
- Crank, C.W.; O’Driscoll, T. Vancomycin-resistant enterococcal infections: Epidemiology, clinical manifestations, and optimal management. Infect. Drug Resist. 2015, 8, 217–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamood, A.N.; Griswold, J.A.; Duhan, C.M. Production of Extracellular Virulence Factors by Pseudomonas aeruginosaIsolates Obtained from Tracheal, Urinary Tract, and Wound Infections. J. Surg. Res. 1996, 61, 425–432. [Google Scholar] [CrossRef]
- Streeter, K.; Katouli, M. Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Settings and the Environment. Infect. Epidemiol. Med. 2016, 2, 25–32. [Google Scholar] [CrossRef]
- Raman, G.; Avendano, E.E.; Chan, J.; Merchant, S.; Puzniak, L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2018, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Lara, H.H.; Ayala-Núñez, N.V.; Turrent, L.D.C.I.; Padilla, C.R. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 2010, 26, 615–621. [Google Scholar] [CrossRef]
- Mi, G.; Shi, D.; Wang, M.; Webster, T.J. Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces. Adv. Healthc. Mater. 2018, 7, e1800103. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Healthc. Mater. 2018, 7, e1701503. [Google Scholar] [CrossRef] [PubMed]
No. | Plants | Part Used |
---|---|---|
1. | Curcuma zedoaria | roots |
2. | Nelumbo nucifera Gaertner | seeds |
3. | Xanthium sibiricum | fruits |
4. | Polygala tenuifolia | roots |
5. | Scutellaria baicalensis George | roots |
6. | Cinnamomum cassia presl | branches |
7. | Asiasarum sieboldii Miquel var | leaves |
8. | Ophiopogon japonicus Ker-Gawler | roots |
9. | Lindera glauca (Siebold & Zucc.) Blume | branches |
10. | Sparganium stoloniferum Buchanan-Hamilton | roots |
11. | Polygonatum sibiricum redoute | roots |
12. | Poria cocos wolf | roots |
13. | Atractylodes japonica Koidzumi | roots |
14. | Torilis japonica | seeds |
15. | Zizyphus jujuba Miller | seeds |
16. | Dendropanax morbiferum Leveille | roots |
17. | Aralia continentalis kitagawa | leaves |
18. | Angelica dahurica | roots |
19. | Paeonia japonica | roots |
20. | Areca catechu | fruits |
Bacteria | Strain |
---|---|
Enterococcus faecalis (E. faecalis) | KCTC 3206 |
Vancomycin-resistant Enterococcus faecalis (VRE) | CCARM 5025 |
Pseudomonas aeruginosa (P. aeruginosa) | KCTC 1637 |
Multidrug-resistant Pseudomonas aeruginosa (MRPA) | CCARM 2092 |
Acinetobacter baumannii (A. baumannii) | KCTC 2508 |
Multidrug-resistant Acinetobacter baumannii (MRAB) | CCARM 12005 |
AgNP Concentration (μg/mL) | Inhibition Zone (mm) | |
---|---|---|
E. faecalis | VRE | |
360 | 12.0 ± 0.9 | 12.3 ± 0.8 |
180 | 11.3 ± 0.9 | 11.2 ± 0.3 |
90 | 10.5 ± 0.5 | 10.1 ± 0.2 |
45 | 9.9 ± 0.3 | 9.2 ± 0.4 |
22.5 | 7.0 ± 0.3 | 6.0 ± 0.0 |
11.25 | 6.0 ± 0.0 | 6.0 ± 0.0 |
Positive control | 27.0 ± 0.0 | 6.0 ± 0.0 |
Negative control (D.W.) | 6.0 ± 0.0 | 6.0 ± 0.0 |
AgNP Concentration (μg/mL) | Inhibition Zone (mm) | |
---|---|---|
P. aeruginosa | MRPA | |
360 | 19.8 ± 1.3 | 16.3 ± 1.5 |
180 | 18.4 ± 0.7 | 15.1 ± 0.8 |
90 | 17.5 ± 0.8 | 13.1 ± 0.3 |
45 | 15.2 ± 0.7 | 11.7 ± 0.6 |
22.5 | 12.8 ± 0.4 | 8.7 ± 0.3 |
11.25 | 10.7 ± 0.5 | 6.4 ± 0.5 |
Positive control | 25.0 ± 0.7 | 6.0 ± 0.0 |
Negative control (D.W.) | 6.0 ± 0.0 | 6.0 ± 0.0 |
AgNP Concentrationš (μg/mL) | Inhibition Zone (mm) | |
---|---|---|
A. baumannii | MRAB | |
360 | 16.8 ± 1.7 | 17.7 ± 1.2 |
180 | 16.2 ± 1.3 | 16.9 ± 0.7 |
90 | 15.1 ± 0.5 | 15.7 ± 0.8 |
45 | 13.9 ± 0.5 | 13.4 ± 0.5 |
22.5 | 10.4 ± 0.5 | 12.2 ± 0.3 |
11.25 | 8.6 ± 0.7 | 10.5 ± 0.5 |
Positive control | 16.0 ± 0.0 | 6.0 ± 0.0 |
Negative control (D.W.) | 6.0 ± 0.0 | 6.0 ± 0.0 |
Bacterial Strains | AgNPs | |
---|---|---|
MIC (μg/mL) | MBC (μg/mL) | |
E. faecalis | 11.25 | 22.5 |
VRE | 11.25 | 22.5 |
P. aeruginosa | 5.6 | 22.5 |
MRPA | 5.6 | 22.5 |
A. baumannii | 5.6 | 22.5 |
MRAB | 5.6 | 11.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.S.; Jung, H.C.; Baek, Y.J.; Kim, B.Y.; Lee, M.W.; Kim, H.D.; Kim, S.W. Antibacterial Activity of Green-Synthesized Silver Nanoparticles Using Areca catechu Extract against Antibiotic-Resistant Bacteria. Nanomaterials 2021, 11, 205. https://doi.org/10.3390/nano11010205
Choi JS, Jung HC, Baek YJ, Kim BY, Lee MW, Kim HD, Kim SW. Antibacterial Activity of Green-Synthesized Silver Nanoparticles Using Areca catechu Extract against Antibiotic-Resistant Bacteria. Nanomaterials. 2021; 11(1):205. https://doi.org/10.3390/nano11010205
Chicago/Turabian StyleChoi, Jeong Su, Hyon Chel Jung, Yeon Jae Baek, Bo Yong Kim, Min Woo Lee, Hyeong Dong Kim, and Suhng Wook Kim. 2021. "Antibacterial Activity of Green-Synthesized Silver Nanoparticles Using Areca catechu Extract against Antibiotic-Resistant Bacteria" Nanomaterials 11, no. 1: 205. https://doi.org/10.3390/nano11010205
APA StyleChoi, J. S., Jung, H. C., Baek, Y. J., Kim, B. Y., Lee, M. W., Kim, H. D., & Kim, S. W. (2021). Antibacterial Activity of Green-Synthesized Silver Nanoparticles Using Areca catechu Extract against Antibiotic-Resistant Bacteria. Nanomaterials, 11(1), 205. https://doi.org/10.3390/nano11010205