Transformation from Self-Focusing to Self-Defocusing of Silver Nanoparticles
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, X.; Chen, Y.; Yan, M.; Qiu, M. Nanosecond Photothermal Effects in Plasmonic Nanostructures. ACS Nano 2012, 6, 2550–2557. [Google Scholar] [CrossRef]
- Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis 2010, 18, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Chen, Y.L.; Yang, D.J.; Li, H.X.; Song, X.P. Structure-Adjustable Gold Nanoingots with Strong Plasmon Coupling and Magnetic Resonance for Improved Photocatalytic Activity and SERS. ACS Appl. Mater. Interfaces 2020, 12, 38554–38562. [Google Scholar] [CrossRef]
- Sathiyamoorthy, K.; Vijayan, C.; Kothiyal, M.P. Low power optical limiting in ClAl-Phthalocyanine due to self defocusing and self phase modulation effects. Opt. Mater. 2009, 31, 79–86. [Google Scholar] [CrossRef]
- Zhang, L.M.; Dai, H.W.; Wang, X.; Yao, L.H.; Ma, Z.W.; Han, J.B. Nonlinear optical properties of Au-Ag core-shell nanorods for all-optical switching. J. Phys. D 2017, 50, 355302. [Google Scholar] [CrossRef]
- Ciret, C.; Gorza, S.P. Scattering of a cross-polarized linear wave by a soliton at an optical event horizon in a birefringent nanophotonic waveguide. Opt. Lett. 2016, 41, 2887–2890. [Google Scholar] [CrossRef] [Green Version]
- De Boni, L.; Barbano, E.C.; de Assumpção, T.A.; Misoguti, L.; Kassab, L.R.P.; Zilio, S.C. Femtosecond third-order nonlinear spectra of lead-germanium oxide glasses containing silver nanoparticles. Opt. Express 2012, 20, 6844–6850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Wang, Y.H. Nonlinear optical properties of metal nanoparticles: A review. RSC Adv. 2017, 7, 45129–45144. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Wu, Z.; Lei, M.; Zhang, L.; Chen, H.; Tang, W.; Peng, Z. A facile route to silver–cadmium sulfide core–shell nanoparticles and their nonlinear optical properties. Mater. Lett. 2013, 104, 76–79. [Google Scholar] [CrossRef]
- Li, R.; Dong, N.; Cheng, C.; Ren, F.; Hübner, R.; Wang, J.; Zhou, S.; Chen, F. Giant Enhancement of Nonlinear Optical Response in Nd:YAG Single Crystals by Embedded Silver Nanoparticles. ACS Omega 2017, 2, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Talita, C.; Ocas, A.R.; Falcao, E.; Araújo, C.D. Light Scattering, Absorption and Refraction Due to High-Order Optical Nonlinearities in Colloidal Gold Nanorods. J. Phys. Chem. C 2019, 123, 12997–13008. [Google Scholar]
- Fan, G.H.; Qu, S.L.; Wang, Q.; Zhao, C.; Lei, Z.; Li, Z.G. Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses. J. Appl. Phys. 2011, 109, 023102. [Google Scholar] [CrossRef]
- Fan, G.H.; Qu, S.L.; Guo, Z.Y.; Wang, Q.; Li, Z.G. Size-dependent nonlinear absorption and refraction of Ag nanoparticles excited by femtosecond lasers. Chin. Phys. B 2012, 21, 047804. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Boltaev, G.S.; Tugushev, R.I.; Usmanov, T. Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions. Appl. Phys. B 2010, 100, 571–576. [Google Scholar] [CrossRef]
- Gomez, L.A.; Dearaujo, C.B.; Brito-Silva, A.M.; Galembeck, A. Solvent effects on the linear and nonlinear optical response of silver nanoparticles. Appl. Phys. B 2008, 92, 61–66. [Google Scholar] [CrossRef]
- Gómez-Malagón Arturo, L. High-Order Nonlinearities of Gold Nanoparticles: The Influence of Size, Filling Factor, and Host. Plasmonics 2015, 10, 1433–1438. [Google Scholar] [CrossRef]
- Han, Y.P.; Sun, J.L.; Ye, H.A.; Wu, W.Z.; Shi, G. Nonlinear refraction of silver nanowires from nanosecond to femtosecond laser excitation. Appl. Phys. B 2009, 94, 233–237. [Google Scholar] [CrossRef]
- He, T.; Wang, C.; Pan, X.; Wang, Y. Nonlinear optical response of Au and Ag nanoparticles doped polyvinylpyrrolidone thin films. Phys. Lett. A 2009, 373, 592–595. [Google Scholar] [CrossRef]
- Lama, P.; Suslov, A.; Walser, A.D.; Dorsinville, R. Plasmon assisted enhanced nonlinear refraction of monodispersed silver nanoparticles and their tunability. Opt. Express 2014, 22, 14014–14021. [Google Scholar] [CrossRef]
- Aleali, H.; Mansour, N. Nanosecond high-order nonlinear optical effects in wide band gap silver sulfide nanoparticles colloids. Optik 2016, 127, 2485–2489. [Google Scholar] [CrossRef]
- Falco-Filho, E.L.; de Araújo, C.B.; Rodrigues, J., Jr. High-order nonlinearities of aqueous colloids containing silver nanoparticles. J. Opt. Soc. Am. B 2007, 24, 2948–2956. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Baba, M.; Morita, M.; Ryasnyansky, A.I.; Suzuki, M.; Turu, M.; Kuroda, H. Fifth-order optical nonlinearity of pseudoisocyanine solution at 529 nm. J. Opt. A Pure Appl. Opt. 2004, 6, 282–287. [Google Scholar] [CrossRef]
- Bindra, K.S.; Kar, A.K. Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses. Appl. Phys. Lett. 2001, 79, 3761–3763. [Google Scholar] [CrossRef]
- Mousavi, Z.; Ghafary, B.; Ara, M. Fifth- and third- order nonlinear optical responses of olive oil blended with natural turmeric dye using z-scan technique. J. Mol. Liq. 2019, 285, 444–450. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Chandra, K.; Dam, D.H.M.; Wiederrecht, G.P.; Odom, T.W. Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles. J. Phys. Chem. Lett. 2015, 6, 4904–4908. [Google Scholar] [CrossRef]
- Gu, B.; Chen, J.; Fan, Y.X.; Ding, J.P.; Wang, H.T. Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method. J. Opt. Soc. Am. B 2005, 22, 2651–2659. [Google Scholar] [CrossRef]
- Gu, B.; Wang, H.T.; Ji, W. Z-scan technique for investigation of the noninstantaneous optical Kerr nonlinearity. Opt. Lett. 2009, 34, 2769–2771. [Google Scholar] [CrossRef]
- Chen, S.Q.; Liu, Z.B.; Zang, W.P.; Tian, J.G.; Zhou, W.Y.; Song, F.; Zhang, C.P. Study on Z-scan characteristics for a large nonlinear phase shift. J. Opt. Soc. Am. B 2005, 22, 1911–1916. [Google Scholar] [CrossRef]
- Ajami, A.; Husinsky, W.; Svecova, B.; Vytykacova, S.; Nekvindova, P. Saturable absorption of silver nanoparticles in glass for femtosecond laser pulses at 400 nm. J. Non-Cryst. Solids 2015, 426, 159–163. [Google Scholar] [CrossRef]
- Hamanaka, Y.; Nakamura, A.; Hayashi, N.; Omi, S. Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal–glass composites. J. Opt. Soc. Am. B 2003, 20, 1227–1232. [Google Scholar] [CrossRef]
I0 (×1012 W/m2) | 0.72 | 1.44 | 2.15 | 2.87 | 9.57 | 13.40 |
---|---|---|---|---|---|---|
γ(×10−17 m2/W) | 10.18 | 8.06 | 13.20 | 6.72 | →0 | →0 |
η(×10−30 m4/W2) | — | −63.36 | −204.01 | −97.51 | −4.11 | −2.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Jia, Y.; Wu, T.; Gao, Y. Transformation from Self-Focusing to Self-Defocusing of Silver Nanoparticles. Nanomaterials 2021, 11, 2485. https://doi.org/10.3390/nano11102485
Jiang J, Jia Y, Wu T, Gao Y. Transformation from Self-Focusing to Self-Defocusing of Silver Nanoparticles. Nanomaterials. 2021; 11(10):2485. https://doi.org/10.3390/nano11102485
Chicago/Turabian StyleJiang, Jijuan, Yang Jia, Tong Wu, and Yachen Gao. 2021. "Transformation from Self-Focusing to Self-Defocusing of Silver Nanoparticles" Nanomaterials 11, no. 10: 2485. https://doi.org/10.3390/nano11102485
APA StyleJiang, J., Jia, Y., Wu, T., & Gao, Y. (2021). Transformation from Self-Focusing to Self-Defocusing of Silver Nanoparticles. Nanomaterials, 11(10), 2485. https://doi.org/10.3390/nano11102485