Differences in ITO Surfaces According to the Formation of Aromatic Rings and Aliphatic Self-Assembled Monolayers for Organic Light-Emitting Diode Applications
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Substrate Preparation
2.3. SAM Modification of the ITO Surface
2.4. Device Fabrication
2.5. Monolayer and Device Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ji, S.B.; Choi, H.W.; Yook, S.K. Materials for Organic Light Emitting Diodes. Korean Ind. Chem. News 2016, 19, 1–11. [Google Scholar]
- Park, H.G.; Park, S.G. Electro-Optical Performance of Organic Thin-Film Using HAT (CN) 6 between Anode and Organic Materials. Coatings 2019, 9, 648. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrova, M. Specifics and challenges to flexible organic light-emitting devices. Adv. Mater. Sci. Eng. 2016, 2016, 4081697. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.N.; Prajapati, M.M. OLED: A modern display technology. Int. J. Sci. Res. Publ. 2014, 4, 1–5. [Google Scholar]
- Tak, Y.H.; Kim, K.B.; Park, H.G.; Lee, K.H.; Lee, J.R. Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Film. 2002, 411, 12–16. [Google Scholar] [CrossRef]
- Yu, S.Y.; Huang, D.C.; Chen, Y.L.; Wu, K.Y.; Tao, Y.T. Approaching charge balance in organic light-emitting diodes by tuning charge injection barriers with mixed monolayers. Langmuir 2011, 28, 424–430. [Google Scholar] [CrossRef]
- Paramonov, P.; Paniagua, S.A.; Hotchkiss, P.J.; Jones, S.C.; Armstrong, N.R.; Marder, S.R.; Brédas, J.L. Theoretical Characterization of the Indium Tin Oxide Surface and of Its Binding Sites for Adsorption of Phosphonic Acid Monolayers. Chem. Mater. 2008, 20, 5131–5133. [Google Scholar] [CrossRef]
- Lee, K.S.; Lim, I.; Han, S.H.; Kim, T.W. Enhancement of the power effciency for pin OLEDs containing organic p-type HAT-CN and n-type LCV materials. Org. Electron. 2014, 15, 343–347. [Google Scholar] [CrossRef]
- Brewer, P.J.; Lane, P.A.; Huang, J.; Demello, A.J.; Bradley, D.D.C.; Demello, J.C. Role of electron injection in polyfluorene-based light emitting diodes containing PEDOT:PSS. Phys. Rev. B 2005, 71, 205–209. [Google Scholar] [CrossRef]
- Benor, A.; Takizawa, S.Y.; Pérez-Bolívar, C.; Anzenbacher, P., Jr. Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT: PSS using UV–ozone exposure. Org. Electron. 2010, 11, 938–945. [Google Scholar] [CrossRef]
- Li, L.; Guan, M.; Cao, G.; Li, Y.; Zeng, Y. Low operating-voltage and high power-efficiency OLED employing MoO3-doped CuPc as hole injection layer. Displays 2012, 33, 17–20. [Google Scholar] [CrossRef]
- Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef]
- Sung, M.M. Self-Assembled Monolayers, SAMs. Electron. Mater. Lett. 2007, 3, 137–145. [Google Scholar]
- Chi, Y.S.; Kang, S.M.; Choi, I.S. Surface Engineering Based on Self-Assembled Monolayers. Polym. Sci. Technol. 2006, 17, 172–181. [Google Scholar]
- Ulman, A. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self—Assembly; Academic press: Cambridge, MA, USA, 2013. [Google Scholar]
- Chaki, N.K.; Vijayamohanan, K. Self-assembled monolayers as a tunable platform for biosensor applications. Biosens. Bioelectron. 2002, 17, 1–12. [Google Scholar] [CrossRef]
- Yip, H.L.; Hau, S.K.; Baek, N.S.; Ma, H.; Jen, A.K.Y. Polymer solar cells that use self-assembled-monolayer-modified ZnO/metals as cathodes. Adv. Mater. 2008, 20, 2376–2382. [Google Scholar] [CrossRef]
- Andreatta, G.A.; Lachowicz, A.; Blondiaux, N.; Allebé, C.; Faes, A. Patterning solar cell metal grids on transparent conductive oxides using self-assembled phosphonic acid monolayers. Thin Solid Film. 2019, 691, 137624. [Google Scholar] [CrossRef] [Green Version]
- Hillebrandt, H.; Tanaka, M. Electrochemical Characterization of Self-Assembled Alkylsiloxane Monolayers on Indium-Tin Oxide (ITO) Semiconductor Electrodes. J. Phys. Chem. B 2001, 105, 4270–4276. [Google Scholar] [CrossRef]
- Ashur, I.; Jones, A.K. Immobilization of azurin with retention of its native electrochemical properties at alkylsilane self-assembled monolayer modified indium tin oxide. Electrochim. Acta 2012, 85, 169–174. [Google Scholar] [CrossRef]
- An, D.; Liu, H.; Wang, S.; Li, X. Modification of ITO anodes with self-assembled monolayers for enhancing hole injection in OLEDs. Appl. Phys. Lett. 2019, 114, 153301. [Google Scholar] [CrossRef]
- Wang, M.; Ian, G.H. Fluorinated alkyl phosphonic acid SAMs replace PEDOT: PSS in polymer semiconductor devices. Org. Electron. 2012, 13, 498–505. [Google Scholar] [CrossRef]
- Yang, L.Y.; Chen, X.Z.; Xu, H.; Ye, D.Q.; Tian, H.; Yin, S.G. Surface modification of indium tin oxide anode with self-assembled monolayer modified Ag film for improved OLED device characteristics. Appl. Surf. Sci. 2008, 254, 5055–5060. [Google Scholar] [CrossRef]
- Baek, M.G.; Shin, J.E.; Park, S.G. Differences in ITO Interface Characteristics Change According to the Formation of Aromatic-Ring and Aliphatic Self-Assembled Monolayers. Crystals 2021, 11, 26. [Google Scholar] [CrossRef]
- Allara, D.L.; Parikh, A.N.; Rondelez, F. Evidence for a Unique Chain Organization in Long Chain Silane Monolayers Deposited on Two Widely Di_erent Solid Substrates. Langmuir 1995, 11, 2357–2360. [Google Scholar] [CrossRef]
- Wasserman, S.R.; Tao, Y.T.; Whitesides, G.M. Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates. Langmuir 1989, 5, 1074–1087. [Google Scholar] [CrossRef]
- Park, Y.; Choong, V.; Gao, Y.; Hsieh, B.R.; Tang, C.W. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 1996, 68, 2699–2701. [Google Scholar] [CrossRef]
- Mermer, O.; Asci, Y. Enhancement of optical and electrical performance of organic light emitting diodes fabricated by SAM modified ITO anodes. J. Optoelectron. Adv. Mater. 2015, 17, 1339–1343. [Google Scholar]
- Schlaf, R. Tutorial on Work Function; USF Surface Science Laboratory, Department of Electrical Engineering at University of South Florida: Tampa, FL, USA, 2007. [Google Scholar]
Material | Min (nm) | Max (nm) | Mid (nm) | Rpv (nm) | Rq (nm) | Ra (nm) |
---|---|---|---|---|---|---|
ITO | −5.407 | 27.411 | 11.002 | 32.818 | 2.053 | 1.342 |
F3SAM | −4.735 | 9.409 | 2.337 | 14.144 | 1.074 | 0.842 |
F10SAM | −2.943 | 14.007 | 5.532 | 16.951 | 0.73 | 0.535 |
TTPS | −8.624 | 15.994 | 3.685 | 24.618 | 1.646 | 1.262 |
TTNS | −4.346 | 12.163 | 3.908 | 16.509 | 0.977 | 0.753 |
Material | hv | Ecutoff | EF | ϕ |
---|---|---|---|---|
ITO | 21.21 eV | 2.303 eV | 9 | 5.08 eV |
F3SAM | 21.21 eV | 8.21 eV | 9 | 5.18 eV |
F10SAM | 21.21 eV | 7.75 eV | 9 | 5.64 eV |
TTPS | 21.21 eV | 8.285 eV | 9 | 5.105 eV |
TTNS | 21.21 eV | 8.25 eV | 9 | 5.14 eV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, M.-G.; Park, S.-G. Differences in ITO Surfaces According to the Formation of Aromatic Rings and Aliphatic Self-Assembled Monolayers for Organic Light-Emitting Diode Applications. Nanomaterials 2021, 11, 2520. https://doi.org/10.3390/nano11102520
Baek M-G, Park S-G. Differences in ITO Surfaces According to the Formation of Aromatic Rings and Aliphatic Self-Assembled Monolayers for Organic Light-Emitting Diode Applications. Nanomaterials. 2021; 11(10):2520. https://doi.org/10.3390/nano11102520
Chicago/Turabian StyleBaek, Myung-Gyun, and Sang-Geon Park. 2021. "Differences in ITO Surfaces According to the Formation of Aromatic Rings and Aliphatic Self-Assembled Monolayers for Organic Light-Emitting Diode Applications" Nanomaterials 11, no. 10: 2520. https://doi.org/10.3390/nano11102520
APA StyleBaek, M. -G., & Park, S. -G. (2021). Differences in ITO Surfaces According to the Formation of Aromatic Rings and Aliphatic Self-Assembled Monolayers for Organic Light-Emitting Diode Applications. Nanomaterials, 11(10), 2520. https://doi.org/10.3390/nano11102520