Physical and Electrical Characterization of Synthesized Millimeter Size Single Crystal Graphene, Using Controlled Bubbling Transfer
Abstract
:1. Introduction
2. Experimental
2.1. Growth of Large-Size Single Crystal Graphene
2.2. Electrochemical Delamination Transfer Process of Graphene (Controlled Bubbling Transfer)
3. Results
3.1. Morphological and Structural Characterization of the As-Grown Single-Crystal Graphene
3.2. Morphological Characterization of Single-Crystal Graphene on SiO2 after Transfer
3.3. Characterization by Raman Spectroscopy
3.4. Strain and Doping Profiles of Graphene
3.5. Electrical Characterization of Single-Crystal Graphene after Transfer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cao, K.; Feng, S.; Han, Y.; Gao, L.; Hue Ly, T.; Xu, Z.; Lu, Y. Elastic Straining of Free-Standing Monolayer Graphene. Nat. Commun. 2020, 11, 284. [Google Scholar] [CrossRef] [Green Version]
- Hwang, E.H.; Adam, S.; Sarma, S.D. Carrier Transport in 2D Graphene Layers. Phys. Rev. Lett. 2007, 98, 186806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balandin, A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, J. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.P.; Nika, D.; Balandin, A.; Bao, W.; Miao, F.; Lau, J. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits. Appl. Phys. Lett. 2008, 92, 151911. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Balandin, A.A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater. 2011, 10, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.R.; Fukumori, M.; TermehYousefi, A.; Eguchi, M.; Tanaka, D.; Ogawa, T.; Tanaka, H. Tuning the Electrical Property of a Single Layer Graphene Nanoribbon by Adsorption of Planar Molecular Nanoparticles. Nanotechnology 2017, 28, 175704. [Google Scholar] [CrossRef]
- Ren, W.; Cheng, H.-M. The Global Growth of Graphene. Nat. Nanotechnol. 2014, 9, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y.I.; et al. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Zhang, Z.; Dong, J.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J.; et al. Ultrafast Epitaxial Growth of Metre-Sized Single-Crystal Graphene on Industrial Cu Foil. Sci. Bull. 2017, 62, 1074–1080. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.-P.; Ren, W.; Cheng, H.-M. Transfer Methods of Graphene from Metal Substrates: A Review. Small Methods 2019, 3, 1900049. [Google Scholar] [CrossRef]
- Pham, P.H.Q.; Zhou, W.; Quach, N.V.; Li, J.; Zheng, J.-G.; Burke, P.J. Controlling Nucleation Density While Simultaneously Promoting Edge Growth Using Oxygen-Assisted Fast Synthesis of Isolated Large-Domain Graphene. Chem. Mater. 2016, 28, 6511–6519. [Google Scholar] [CrossRef]
- Wu, Y.; Hao, Y.; Jeong, H.Y.; Lee, Z.; Chen, S.; Jiang, W.; Wu, Q.; Piner, R.D.; Kang, J.; Ruoff, R.S. Crystal Structure Evolution of Individual Graphene Islands During CVD Growth on Copper Foil. Adv. Mater. 2013, 25, 6744–6751. [Google Scholar] [CrossRef]
- Chen, S.; Ji, H.; Chou, H.; Li, Q.; Li, H.; Suk, J.W.; Piner, R.; Liao, L.; Cai, W.; Ruoff, R.S. Millimeter-Size Single-Crystal Graphene by Suppressing Evaporative Loss of Cu During Low Pressure Chemical Vapor Deposition. Adv. Mater. 2013, 25, 2062–2065. [Google Scholar] [CrossRef]
- Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L.-P.; Zhang, Z.; Fu, Q.; Peng, L.-M.; et al. Repeated Growth and Bubbling Transfer of Graphene with Millimetre-Size Single-Crystal Grains Using Platinum. Nat. Commun. 2012, 3, 699. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhao, W.; Yang, X.; Chen, Y.; Wu, W.; Song, Y.; Yuan, Q. Suitable Surface Oxygen Concentration on Copper Contributes to the Growth of Large Graphene Single Crystals. J. Phys. Chem. Lett. 2019, 10, 4868–4874. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Magnuson, C.W.; Venugopal, A.; Tromp, R.M.; Hannon, J.B.; Vogel, E.M.; Colombo, L.; Ruoff, R.S. Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. J. Am. Chem. Soc. 2011, 133, 2816–2819. [Google Scholar] [CrossRef]
- Yu, Q.; Jauregui, L.A.; Wu, W.; Colby, R.; Tian, J.; Su, Z.; Cao, H.; Liu, Z.; Pandey, D.; Wei, D.; et al. Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapour Deposition. Nat. Mater. 2011, 10, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Deokar, G.; Avila, J.; Razado-Colambo, I.; Codron, J.-L.; Boyaval, C.; Galopin, E.; Asensio, M.-C.; Vignaud, D. Towards High Quality CVD Graphene Growth and Transfer. Carbon 2015, 89, 82–92. [Google Scholar] [CrossRef]
- Park, H.; Lim, C.; Lee, C.-J.; Kang, J.; Kim, J.; Choi, M.; Park, H. Optimized Poly(Methyl Methacrylate)-Mediated Graphene-Transfer Process for Fabrication of High-Quality Graphene Layer. Nanotechnology 2018, 29, 415303. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K.P. Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS Nano 2011, 5, 9927–9933. [Google Scholar] [CrossRef]
- de la Rosa, C.J.L.; Sun, J.; Lindvall, N.; Cole, M.T.; Nam, Y.; Löffler, M.; Olsson, E.; Teo, K.B.K.; Yurgens, A. Frame Assisted H2O Electrolysis Induced H2 Bubbling Transfer of Large Area Graphene Grown by Chemical Vapor Deposition on Cu. Appl. Phys. Lett. 2013, 102, 022101. [Google Scholar] [CrossRef] [Green Version]
- Fisichella, G.; Di Franco, S.; Roccaforte, F.; Ravesi, S.; Giannazzo, F. Microscopic Mechanisms of Graphene Electrolytic Delamination from Metal Substrates. Appl. Phys. Lett. 2014, 104, 233105. [Google Scholar] [CrossRef]
- Koh, S.; Saito, Y.; Kodama, H.; Sawabe, A. Epitaxial Growth and Electrochemical Transfer of Graphene on Ir(111)/α-Al2O3(0001) Substrates. Appl. Phys. Lett. 2016, 109, 023105. [Google Scholar] [CrossRef]
- Pizzocchero, F.; Jessen, B.S.; Whelan, P.R.; Kostesha, N.; Lee, S.; Buron, J.D.; Petrushina, I.; Larsen, M.B.; Greenwood, P.; Cha, W.J.; et al. Non-Destructive Electrochemical Graphene Transfer from Reusable Thin-Film Catalysts. Carbon 2015, 85, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Frank, O.; Vejpravova, J.; Holy, V.; Kavan, L.; Kalbac, M. Interaction between Graphene and Copper Substrate: The Role of Lattice Orientation. Carbon 2014, 68, 440–451. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.C.; Farmer, J.C.; Anderson, R.J. In Situ Raman Spectroscopy of Anodic Films Formed on Copper and Silver in Sodium Hydroxide Solution. J. Electrochem. Soc. 1986, 133, 739–745. [Google Scholar] [CrossRef]
- Yin, X.; Li, Y.; Ke, F.; Lin, C.; Zhao, H.; Gan, L.; Luo, Z.; Zhao, R.; Heinz, T.F.; Hu, Z. Evolution of the Raman Spectrum of Graphene Grown on Copper upon Oxidation of the Substrate. Nano Res. 2014, 7, 1613–1622. [Google Scholar] [CrossRef]
- Lee, J.E.; Ahn, G.; Shim, J.; Lee, Y.S.; Ryu, S. Optical Separation of Mechanical Strain from Charge Doping in Graphene. Nat. Commun. 2012, 3, 1024. [Google Scholar] [CrossRef] [Green Version]
- Fromm, F.; Wehrfritz, P.; Hundhausen, M.; Seyller, T. Looking behind the Scenes: Raman Spectroscopy of Top-Gated Epitaxial Graphene through the Substrate. New J. Phys. 2013, 15, 113006. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.C.; et al. Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat. Nanotechnol. 2008, 3, 210–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Pan, Z.; Fu, L.; Zhang, C.; Dai, B.; Liu, Z. The Origin of Wrinkles on Transferred Graphene. Nano Res. 2011, 4, 996–1004. [Google Scholar] [CrossRef]
- Pham, P.H.Q.; Zhang, W.; Quach, N.V.; Li, J.; Zhou, W.; Scarmardo, D.; Brown, E.R.; Burke, P.J. Broadband Impedance Match to Two-Dimensional Materials in the Terahertz Domain. Nat. Commun. 2017, 8, 2233. [Google Scholar] [CrossRef] [PubMed]
Before Transfer | Before Transfer | After Transfer | |
---|---|---|---|
Graphene Peaks | Graphene on copper | Graphene on copper oxide | Graphene on Si/SiO2 |
νG (cm−1) | 1591 ± 2 | 1579 ± 3 | 1590 ± 8 |
ν2D (cm−1) | 2730 ± 2 | 2689 ± 3 | 2708 ± 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Salk, S.; Pandey, R.R.; Pham, P.H.Q.; Zhou, D.; Wei, W.; Cochez, G.; Vignaud, D.; Pallecchi, E.; Burke, P.J.; Happy, H. Physical and Electrical Characterization of Synthesized Millimeter Size Single Crystal Graphene, Using Controlled Bubbling Transfer. Nanomaterials 2021, 11, 2528. https://doi.org/10.3390/nano11102528
Ben Salk S, Pandey RR, Pham PHQ, Zhou D, Wei W, Cochez G, Vignaud D, Pallecchi E, Burke PJ, Happy H. Physical and Electrical Characterization of Synthesized Millimeter Size Single Crystal Graphene, Using Controlled Bubbling Transfer. Nanomaterials. 2021; 11(10):2528. https://doi.org/10.3390/nano11102528
Chicago/Turabian StyleBen Salk, Soukaina, Reetu Raj Pandey, Phi H. Q. Pham, Di Zhou, Wei Wei, Guillaume Cochez, Dominique Vignaud, Emiliano Pallecchi, Peter J. Burke, and Henri Happy. 2021. "Physical and Electrical Characterization of Synthesized Millimeter Size Single Crystal Graphene, Using Controlled Bubbling Transfer" Nanomaterials 11, no. 10: 2528. https://doi.org/10.3390/nano11102528
APA StyleBen Salk, S., Pandey, R. R., Pham, P. H. Q., Zhou, D., Wei, W., Cochez, G., Vignaud, D., Pallecchi, E., Burke, P. J., & Happy, H. (2021). Physical and Electrical Characterization of Synthesized Millimeter Size Single Crystal Graphene, Using Controlled Bubbling Transfer. Nanomaterials, 11(10), 2528. https://doi.org/10.3390/nano11102528