Polarization-Independent Optoelectronic Modulator Based on Graphene Ridge Structure
Abstract
:1. Introduction
2. Structure Design and Theory Analysis
2.1. The Structure Design
2.2. The Optoelectronic Properties of Graphene
3. Simulation Results and Analysis
4. The Device Performance Parameters
4.1. The Extinction Ratio
4.2. The Modulation Bandwidth
4.3. The Insertion Loss
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Palushani, E.; Galili, M.; Mulvad, H.C.; Jeppesen, P. 640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion. Opt. Express 2010, 18, 9961–9966. [Google Scholar]
- Tu, X.; Liow, T.Y.; Song, J.; Luo, X.; Fang, Q.; Yu, M.; Lo, G.Q. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express 2013, 21, 12776–12782. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zhou, H.; Meng, Z. Modulation efficiency of a LiNbO3 waveguide electro-optic intensity modulator operating at high microwave frequency. Opt. Lett. 2009, 34, 1822–1824. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Chen, H.W.; Jain, S.; Peters, J.D.; Bowers, J.E. 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator. Opt. Express 2011, 19, 5811–5816. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Fan, F.; Chang, S. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control. Nanomaterials 2019, 9, 398. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Zhou, C.; Luo, K.; Li, W.; Liu, J.; Liu, Z.; Wu, Z. Ultrawide bandwidth and sensitive electro-optic modulator based on a graphene nanoelectromechanical system with superlubricity. Carbon 2021, 176, 228–234. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Ren, G.; Cryan, M.J.; Gao, Y.; Lian, Y.; Wang, J.; Wan, C.; Jian, S. Two-dimensional analogies to frequency-selective surfaces (FSS) on the graphene sheet. Plasmonics 2016, 11, 903–907. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Zhang, X. Double-layer graphene optical modulator. Nano Lett. 2012, 12, 1482–1485. [Google Scholar] [CrossRef]
- Kim, K.; Choi, J.Y.; Kim, T.; Cho, S.H.; Chung, H.J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bai, L.; Li, X.; Gu, E.; Niu, L.; Zhang, X. U-shaped micro-ring graphene electro-optic modulator. Opt. Commun. 2018, 428, 200–205. [Google Scholar] [CrossRef]
- Li, Z.; Bai, L.; Gu, E.; Xie, R.; Li, X.; Li, W. TBOR-shaped electro-optic modulator with dual output based on double-layer graphene. Phys. Lett. A 2018, 383, 578–584. [Google Scholar] [CrossRef]
- Ye, S.; Wang, Z.; Tang, L.; Zhang, Y.; Lu, R.; Liu, Y. Electro-absorption optical modulator using dual-graphene-on-graphene configuration. Opt. Express 2014, 22, 26173–26180. [Google Scholar] [CrossRef] [PubMed]
- Phare, C.T.; Daniel Lee, Y.H.; Cardenas, J.; Lipson, M. Graphene electro-optic modulator with 30GHz bandwidth. Nat. Photonics 2015, 9, 511–514. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, L.; Dai, J.; Liang, Y.; Guo, J.; Meng, H.; Liu, H.; Dai, Q.; Wei, Z. Broadband filter and adjustable extinction ratio modulator based on metal-graphene hybrid metamaterials. Nanomaterials 2020, 10, 1359. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, R.; Wang, Y.; Cai, S.; Zhang, Y.; Wang, X.; Liu, Y. A fabrication-friendly graphene-based polarization insensitive optical modulator. Optik 2019, 182, 1093–1098. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J. Design of graphene-based polarization-insensitive optical modulator. Nanophotonics 2018, 7, 651–658. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; Xing, F. Review of polarization optical devices based on graphene materials. Int. J. Mol. Sci. 2020, 21, 1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.K.; Lu, R.; Peng, D.; Ma, Y.; Ye, S.; Zhang, Y.; Zhang, Z.; Liu, Y. Graphene-assisted polarization-insensitive electro-absorption optical modulator. IEEE Trans. Nanotechnol. 2017, 16, 1004–1010. [Google Scholar] [CrossRef]
- Ye, S.; Liang, D.; Lu, R.; Shah, M.K.; Zou, X.; Yuan, F.; Yang, F.; Liu, Y. Polarization-independent modulator by partly tilted graphene-induced electro-absorption effect. IEEE Photonic Technol. Lett. 2016, 29, 23–26. [Google Scholar] [CrossRef]
- Gosciniak, J.; Tan, D.T. Theoretical investigation of graphene-based photonic modulators. Sci. Rep. 2013, 3, 1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.P.; Zhai, X.; Wang, L.L.; Li, H.J.; Xie, F.; Xia, S.X.; Shang, X.; Luo, X. Graphene-based long-range spp. hybrid waveguide with ultra-long propagation length in mid-infrared range. Opt. Express 2016, 24, 5376–5386. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Chiang, K.S. Experimental verification of optical models of graphene with multimode slab waveguides. Opt. Lett. 2016, 41, 2129–2132. [Google Scholar] [CrossRef]
- Hao, R.; Du, W.; Li, E.P.; Chen, H.S. Graphene assisted TE/TM-independent polarizer based on mach–zehnder interferometer. IEEE Photonic Technol. Lett. 2015, 27, 1112–1115. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, M.; Lin, X.; Liu, H.; Wang, H.; Yu, F.; Lin, S.; Li, E.; Chen, H. A circuit method to integrate metamaterial and graphene in absorber design. Opt. Commun. 2014, 329, 76–80. [Google Scholar] [CrossRef]
- Kim, J.; Son, H.; Cho, D.J.; Geng, B.; Regan, W.; Shi, S.; Kim, K.; Zettl, A.; Shen, Y.R.; Wang, F. Electrical control of optical plasmon resonance with graphene. Nano Lett. 2012, 12, 5598–5602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, Y.Z.; Fei, Y.; Jason, C.R.; Ertugrul, C. Cavity-enhanced mid-infrared absorption in perforated graphene. J. Nanophotonics 2014, 8, 083888. [Google Scholar]
- Xia, F.; Perebeinos, V.; Lin, Y.M.; Wu, Y.; Avouris, P. The origins and limits of metal–graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Taghi, A.M.; Zaharah, J.; Aziziah, A.N.; Hossein, F.A.; Razali, I. Graphene nanoribbon conductance model in parabolic band structure. J. Nanomater. 2010, 2010, 753738. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Li, X.; Guo, Z.; Zhao, X.; Meng, S.; Li, Z. Polarization-Independent Optoelectronic Modulator Based on Graphene Ridge Structure. Nanomaterials 2021, 11, 2559. https://doi.org/10.3390/nano11102559
Guo S, Li X, Guo Z, Zhao X, Meng S, Li Z. Polarization-Independent Optoelectronic Modulator Based on Graphene Ridge Structure. Nanomaterials. 2021; 11(10):2559. https://doi.org/10.3390/nano11102559
Chicago/Turabian StyleGuo, Shiliang, Xin Li, Zechen Guo, Xingtao Zhao, Shuhan Meng, and Zhiquan Li. 2021. "Polarization-Independent Optoelectronic Modulator Based on Graphene Ridge Structure" Nanomaterials 11, no. 10: 2559. https://doi.org/10.3390/nano11102559
APA StyleGuo, S., Li, X., Guo, Z., Zhao, X., Meng, S., & Li, Z. (2021). Polarization-Independent Optoelectronic Modulator Based on Graphene Ridge Structure. Nanomaterials, 11(10), 2559. https://doi.org/10.3390/nano11102559