Features of Hydrogen Reduction of Fe(CN)63− Ions in Aqueous Solutions: Effect of Hydrogen Dissolved in Palladium Nanoparticles
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Kinetics and Mechanism of the Catalytic Reduction of Fe(CN)63− Ions with Hydrogen
3.2. Effect of the Amount of Hydrogen Dissolved in Pd NPs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TEM | transmission electron microscopy |
DLS | dynamic light scattering |
PANa | polyacrilic acid sodium salt |
Pd NPs | palladium nanoparticles |
UV/Vis | ultraviolet and visible |
UV | ultraviolet |
References
- Daniel, M.-C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2003, 104, 293–346. [Google Scholar] [CrossRef]
- Aiken, J.D.; Finke, R.G. A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A Chem. 1999, 145, 1–44. [Google Scholar] [CrossRef]
- Chen, A.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Jin, M.; Xiong, Y.; Lim, B.; Xia, Y. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 2013, 46, 1783–1794. [Google Scholar] [CrossRef] [PubMed]
- Sharada, S.; Suryawanshi, P.L.; Rajesh Kumar, P.; Gumfekar, S.P.; Narsaiah, T.B.; Sonawane, S.H. Synthesis of palladium nanoparticles using continuous flow microreactor. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 498, 297–304. [Google Scholar] [CrossRef]
- Xiong, Y.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19, 3385–3391. [Google Scholar] [CrossRef]
- Revina, A.A.; Kuznetsov, M.A.; Busev, S.A.; Boyakov, E.E.; Mikhaylov, A.A. Synthesis properties and electrocatalytic activities of Pd, Ru, Rh nanoparticles. Int. J. Adv. Res. Chem. Sci. 2015, 2, 7–21. [Google Scholar]
- Goia, D.V.; Matijević, E. Preparation of monodispersed metal particles. New J. Chem. 1998, 22, 1203–1215. [Google Scholar] [CrossRef]
- Freund, P.L.; Spiro, M. Colloidal catalysis: The effect of sol size and concentration. J. Phys. Chem. 1985, 89, 1074–1077. [Google Scholar] [CrossRef]
- Di, C.L.; SunYunjie, C.; Jinghong Li, H. Shaowei surface effects of monolayer-protected gold nanoparticles on the redox reactions between ferricyanide and thiosulfate. Sci. China Ser. B 2005, 48, 424–430. [Google Scholar] [CrossRef]
- Biswas, M.; Dinda, E.; Rashid, M.H.; Mandal, T.K. Correlation between catalytic activity and surface ligands of monolayer protected gold nanoparticles. J. Colloid Interface Sci. 2012, 368, 77–85. [Google Scholar] [CrossRef]
- Carregal-Romero, S.; Pérez-Juste, J.; Hervés, P.; Liz-Marzán, L.M.; Mulvaney, P. Colloidal gold-catalyzed reduction of ferrocyanate (III) by borohydride ions: A model system for redox catalysis. Langmuir 2010, 26, 1271–1277. [Google Scholar] [CrossRef]
- Ershov, B.G.; Abkhalimov, E.V.; Solovov, R.D.; Roldughin, V.I. Gold nanoparticles in aqueous solutions: Influence of size and pH on hydrogen dissociative adsorption and Au(III) ion reduction. Phys. Chem. Chem. Phys. 2016, 18, 13459–13466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanan, R.; El-Sayed, M.A. Effect of Catalytic activity on the metallic nanoparticle size distribution: Electron-transfer reaction between Fe(CN) 6 and thiosulfate ions catalyzed by PVP−platinum nanoparticles. J. Phys. Chem. B 2003, 107, 12416–12424. [Google Scholar] [CrossRef]
- Kalekar, A.M.; Sharma, K.K.K.; Lehoux, A.; Audonnet, F.; Remita, H.; Saha, A.; Sharma, G.K. Investigation into the catalytic activity of porous platinum nanostructures. Langmuir 2013, 29, 11431–11439. [Google Scholar] [CrossRef]
- Reina, A.; Dang-Bao, T.; Guerrero-Ríos, I.; Gómez, M. Palladium and copper: Advantageous nanocatalysts for multi-step transformations. Nanomaterials 2021, 11, 1891. [Google Scholar] [CrossRef] [PubMed]
- Altaf, F.; Gill, R.; Bocchetta, P.; Batool, R.; Hameed, M.U.; Abbas, G.; Jacob, K. Electrosynthesis and Characterization of Novel CNx-HMMT Supported Pd Nanocomposite Material for Methanol Electro-Oxidation. Energies 2021, 14, 3578. [Google Scholar] [CrossRef]
- Albano, G.; Evangelisti, C.; Aronica, L. Palladium Nanoparticles Supported on Smopex-234® as Valuable Catalysts for the Synthesis of Heterocycles. Catalysts 2021, 11, 706. [Google Scholar] [CrossRef]
- Lerch, S.; Stolaś, A.; Darmadi, I.; Wen, X.; Strach, M.; Langhammer, C.; Moth-Poulsen, K. Robust Colloidal Synthesis of Palladium–Gold Alloy Nanoparticles for Hydrogen Sensing. ACS Appl. Mater. Interfaces 2021, 13, 45758–45767. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, Y.; Ye, C.; Liu, Y.; Zhang, Z.; Yin, M.; Gao, Q.; Liu, H. Durable Hydrogen Peroxide Biosensors Based on Polypyrrole-Decorated Platinum/Palladium Bimetallic Nanoparticles. ACS Appl. Nano Mater. 2021, 4, 8116–8125. [Google Scholar] [CrossRef]
- You, J.; Manners, I.; Dou, H. In Situ preparation of composite redox-active micelles bearing Pd Nanoparticles for the reduction of 4-nitrophenol. Langmuir 2021, 37, 9089–9097. [Google Scholar] [CrossRef]
- Wang, C.; Yin, J.; Han, S.; Jiao, T.; Bai, Z.; Zhou, J.; Zhang, L.; Peng, Q. Preparation of Palladium nanoparticles decorated polyethyleneimine/polycaprolactone composite fibers constructed by electrospinning with highly efficient and recyclable catalytic performances. Catalysts 2019, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Langhammer, C.; Zhdanov, V.P.; Zorić, I.; Kasemo, B. Size-Dependent kinetics of hydriding and dehydriding of Pd Nanoparticles. Phys. Rev. Lett. 2010, 104, 135502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griessen, R.; Strohfeldt, N.; Giessen, H. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nat. Mater. 2016, 15, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Ershov, B.G. Reversible sorption of hydrogen by colloidal palladium in aqueous solutions. Russ. Chem. Bull. 1996, 45, 299–302. [Google Scholar] [CrossRef]
- Ershov, B.G.; Solovov, R.D. Hydrosols of Pd and Pd-H2: Influence of particle nature on the rate of catalytic reduction of hexacyanoferrate(III) ions with hydrogen. Catal. Commun. 2018, 103, 34–37. [Google Scholar] [CrossRef]
- Ershov, B.G.; Solovov, R.D.; Abkhalimov, E.V. Palladium nanoparticles in aqueous solution: Preparation, properties, and effect of their size on catalytic activity. Colloid J. 2014, 76, 553–557. [Google Scholar] [CrossRef]
- Solovov, R.D.; Ershov, B.G. Preparation of palladium nanoparticles with desired sizes in aqueous solutions. Colloid J. 2014, 76, 595–599. [Google Scholar] [CrossRef]
- Ershov, B.G.; Anan’ev, A.V.; Sukhov, N.L. The effect of the concentration of platinum nanocolloid stabilizer on the rate of catalytic reactions in aqueous solution. Colloid J. 2006, 68, 148–154. [Google Scholar] [CrossRef]
- Ershov, B.G.; Sukhov, N.L. Effect of polyelectrolyte concentration on the rate of the catalytic reduction of methyl viologen with hydrogen in an aqueous solution in the presence of platinum nanoparticles. Mendeleev Commun. 2003, 13, 201–202. [Google Scholar] [CrossRef]
- Henglein, A. Colloidal Palladium Nanoparticles: Reduction of Pd(II) by H2; PdCore AuShell AgShell Particles. J. Phys. Chem. B 2000, 104, 6683–6685. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solovov, R.; Ershov, B. Features of Hydrogen Reduction of Fe(CN)63− Ions in Aqueous Solutions: Effect of Hydrogen Dissolved in Palladium Nanoparticles. Nanomaterials 2021, 11, 2587. https://doi.org/10.3390/nano11102587
Solovov R, Ershov B. Features of Hydrogen Reduction of Fe(CN)63− Ions in Aqueous Solutions: Effect of Hydrogen Dissolved in Palladium Nanoparticles. Nanomaterials. 2021; 11(10):2587. https://doi.org/10.3390/nano11102587
Chicago/Turabian StyleSolovov, Roman, and Boris Ershov. 2021. "Features of Hydrogen Reduction of Fe(CN)63− Ions in Aqueous Solutions: Effect of Hydrogen Dissolved in Palladium Nanoparticles" Nanomaterials 11, no. 10: 2587. https://doi.org/10.3390/nano11102587
APA StyleSolovov, R., & Ershov, B. (2021). Features of Hydrogen Reduction of Fe(CN)63− Ions in Aqueous Solutions: Effect of Hydrogen Dissolved in Palladium Nanoparticles. Nanomaterials, 11(10), 2587. https://doi.org/10.3390/nano11102587