Excellent Bipolar Resistive Switching Characteristics of Bi4Ti3O12 Thin Films Prepared via Sol-Gel Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure Analysis
3.2. Electrical Performance
3.3. Mechanism Discussion
3.4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilbert, M.; López, P. The world’s technological capacity to store, communicate, and compute information. Science 2011, 332, 60–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.-C.; Chang, K.-C.; Tsai, T.-M.; Chu, T.-J.; Sze, S.M. Resistance random access memory. Mater. Today 2016, 19, 254–264. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, J.; Wang, L.; Sun, B.; Ren, Z.; Xu, C.; Yao, Y.; Liao, L.; Wang, G.; Zheng, S. Evolution map of the memristor: From pure capacitive state to resistive switching state. Nanoscale 2019, 11, 17222–17229. [Google Scholar] [CrossRef] [PubMed]
- Burr, G.W.; Kurdi, B.N.; Scott, J.C.; Lam, C.H.; Gopalakrishnan, K.; Shenoy, R.S. Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 2018, 52, 449–464. [Google Scholar] [CrossRef] [Green Version]
- Kolar, J.; Macak, J.M.; Terabe, K.; Wagner, T. Down-scaling of resistive switching to nanoscale using porous anodic alumina membranes. J. Mater. Chem. C 2014, 2, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Bez, R.; Pirovano, A. Non-volatile memory technologies: Emerging concepts and new materials. Mater. Sci. Semicond. Process. 2004, 7, 349–355. [Google Scholar] [CrossRef]
- Wang, W.; Shi, L.; Zhao, R.; Lim, K.; Lee, H.; Chong, T.; Wu, Y. Fast phase transitions induced by picosecond electrical pulses on phase change memory cells. Appl. Phys. Lett. 2008, 93, 043121. [Google Scholar] [CrossRef]
- Nishimura, N.; Hirai, T.; Koganei, A.; Ikeda, T.; Okano, K.; Sekiguchi, Y.; Osada, Y. Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory. J. Appl. Phys. 2002, 91, 5246–5249. [Google Scholar] [CrossRef]
- Ishiwara, H. Ferroelectric random access memories. J. Nanosci. Nanotechnol. 2012, 12, 7619–7627. [Google Scholar] [CrossRef]
- Liu, J.; Jin, J.; Yang, Z.; Cai, J.; Yue, J.; Impundu, J.; Liu, H.; Wei, H.; Peng, Z.; Li, Y.J. Extremely Low Program Current Memory Based on Self-Assembled All-Inorganic Perovskite Single Crystals. ACS Appl. Mater. Interfaces 2020, 12, 31776–31782. [Google Scholar] [CrossRef]
- Li, Y.; Lv, H.; Liu, Q.; Long, S.; Wang, M.; Xie, H.; Zhang, K.; Huo, Z.; Liu, M. Bipolar one diode–one resistor integration for high-density resistive memory applications. Nanoscale 2013, 5, 4785–4789. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Choi, S.; Lu, W. Oxide heterostructure resistive memory. Nano Lett. 2013, 13, 2908–2915. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Zeng, F.; Chen, C.; Liu, H.; Gao, S.; Song, C.; Lin, Y.; Chen, G.; Pan, F. Programmable complementary resistive switching behaviours of a plasma-oxidised titanium oxide nanolayer. Nanoscale 2013, 5, 422–428. [Google Scholar] [CrossRef]
- Hu, L.; Lin, G.; Wei, R.; Luo, X.; Tang, X.; Zhu, X.; Song, W.; Dai, J.; Sun, Y. Unipolar resistive switching behavior of amorphous SrMoO4 thin films deposited at room temperature. Ceram. Int. 2017, 43, 3177–3182. [Google Scholar] [CrossRef]
- Abbasi, M.S.; Irshad, M.S.; Arshad, N.; Ahmed, I.; Idrees, M.; Ahmad, S.; Wei, Z.; Sharaf, M.; Firdausi, M.D.A. Biomaterial-Induced Stable Resistive Switching Mechanism in TiO2 Thin Films: The Role of Active Interstitial Sites/Ions in Minimum Current Leakage and Superior Bioactivity. ACS Omega 2020, 5, 19050–19060. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Q.; Bai, S.; Xu, M.; He, D.; Lyu, D.; Qi, J.J.A.P.L. The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory. Appl. Phys. Lett. 2017, 110, 073501. [Google Scholar] [CrossRef]
- Lu, W.; Xiao, J.; Wong, L.-M.; Wang, S.; Zeng, K. Probing the ionic and electrochemical phenomena during resistive switching of NiO thin films. ACS Appl. Mater. Interfaces 2018, 10, 8092–8101. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, Y.; Wang, C.; Chen, Y.; Li, J.; Zhao, J.; Hwang, C.S. Controlling the thin interfacial buffer layer for improving the reliability of the Ta/Ta2O5/Pt resistive switching memory. Appl. Phys. Lett. 2018, 113, 072902. [Google Scholar] [CrossRef]
- Liu, C.-F.; Tang, X.-G.; Wang, L.-Q.; Tang, H.; Jiang, Y.-P.; Liu, Q.-X.; Li, W.-H.; Tang, Z.-H. Resistive switching characteristics of HfO2 thin films on mica substrates prepared by Sol-Gel process. Nanomaterials 2019, 9, 1124. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Li, Y.; Li, Q.; Song, Z.; Ma, F. Enhanced resistive switching characteristics in Al2O3 memory devices by embedded Ag nanoparticles. Nanotechnology 2017, 28, 215201. [Google Scholar] [CrossRef]
- Nili, H.; Walia, S.; Balendhran, S.; Strukov, D.B.; Bhaskaran, M.; Sriram, S. Nanoscale resistive switching in amorphous perovskite oxide (a-SrTiO3) memristors. Adv. Funct. Mater. 2014, 24, 6741–6750. [Google Scholar] [CrossRef]
- Pan, R.; Zhang, T.; Wang, J.; Wang, J.; Wang, D.; Duan, M. Mechanisms of current conduction in Pt/BaTiO3/Pt resistive switching cell. Thin Solid Films. 2012, 520, 4016–4020. [Google Scholar] [CrossRef]
- Cao, T.; Kwon, O.; Lin, C.; Vohs, J.M.; Gorte, R.J. Two-Dimensional Perovskite Crystals Formed by Atomic Layer Deposition of CaTiO3onγ-Al2O3. Nanomaterials 2021, 11, 2207. [Google Scholar] [CrossRef]
- Fan, Q.; Li, D.; Li, J.; Wang, C. Compounds, Structure and piezoelectricity properties of V-doped ZnO thin films fabricated by sol-gel method. J. Alloy. Compd. 2020, 829, 154483. [Google Scholar] [CrossRef]
- Wei, W.; Peng, Y.; Wang, J.; Farooq Saleem, M.; Wang, W.; Li, L.; Wang, Y.; Sun, W. Temperature Dependence of Stress and Optical Properties in AlN Films Grown by MOCVD. Nanomaterials 2021, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Guo, M.; Song, D.; Tang, X.; Wei, R.; Hu, L.; Yang, J.; Song, W.; Dai, J.; Lou, X. Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications. Appl. Phys. Lett. 2017, 111, 183903. [Google Scholar] [CrossRef]
- He, H.; Yin, J.; Li, Y.; Zhang, Y.; Qiu, H.; Xu, J.; Xu, T.; Wang, C. Size controllable synthesis of single-crystal ferroelectric Bi4Ti3O12 nanosheet dominated with {0 0 1} facets toward enhanced visible-light-driven photocatalytic activities. Appl. Catal. 2014, 156, 35–43. [Google Scholar] [CrossRef]
- Guo, Y.; Akai, D.; Swada, K.; Ishida, M. Ferroelectric and pyroelectric properties of highly (110)-oriented Pb(Zr0.40Ti0.60)O3 thin films grown on Pt/LaNiO3 /SiO2/Si substrates. Appl. Phys. Lett. 2007, 90, 232908. [Google Scholar] [CrossRef]
- Miyazaki, H.; Goto, T.; Miwa, Y.; Ohno, T.; Suzuki, H.; Ota, T.; Takahashi, M. Preparation and evaluation of LaNiO3 thin film electrode with chemical solution deposition. J. Eur. Ceram. Soc. 2004, 24, 1005–1008. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wong, K.H.; Liu, J.M.; Yin, X.B.; Wang, M.; Liu, Z.G. The orientation-selective growth of LaNiO3 films on Si(100) by pulsed laser deposition using a MgO buffer. Appl. Phys. A 2002, 75, 545–549. [Google Scholar] [CrossRef]
- Sama, N.; Herdier, R.; Jenkins, D.; Soyer, C.; Remiens, D.; Detalle, M.; Bouregba, R. On the influence of the top and bottom electrodes—A comparative study between Pt and LNO electrodes for PZT thin films. J. Cryst. Growth 2008, 310, 3299–3302. [Google Scholar] [CrossRef]
- Ma, C.; Luo, Z.; Huang, W.; Zhao, L.; Chen, Q.; Lin, Y.; Liu, X.; Chen, Z.; Liu, C.; Sun, H.; et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat. Commun. 2020, 11, 1439. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.A.; Sung, K.D.; Won, C.J.; Jung, J.H.; Hur, R. Bipolar resistance switching and photocurrent in a BaTiO3-δ thin film. J. Appl. Phys. 2013, 114, 094101. [Google Scholar] [CrossRef]
- Singh, P.; Rout, P.; Singh, M.; Rakshit, R.; Dogra, A. Ferroelectric memory resistive behavior in BaTiO3/Nb doped SrTiO3 heterojunctions. Thin Solid Films 2017, 643, 60–64. [Google Scholar] [CrossRef]
- Hong, S.; Choi, T.; Jeon, J.H.; Kim, Y.; Lee, H.; Joo, H.; Hwang, I.; Kim, J.S.; Kang, S.O.; Kalinin, S.V.; et al. Large Resistive Switching in Ferroelectric BiFeO3 Nano-Island Based Switchable Diodes. Adv. Mater. 2013, 25, 2339–2343. [Google Scholar] [CrossRef] [PubMed]
- Kossar, S.; Amiruddin, R.; Rasool, A.; Dhayanithi, D.; Kumar, M.C.S. Ferroelectric polarization induced memristive behavior in bismuth ferrite (BiFeO3) based memory devices. Superlattices Microstruct. 2020, 148, 106726. [Google Scholar] [CrossRef]
- Jena, A.; Sahoo, A.K.; Mohanty, J. Effects of magnetic field on resistive switching in multiferroic based Ag/BiFeO3/FTO RRAM device. Appl. Phys. Lett. 2020, 116, 092901. [Google Scholar] [CrossRef]
- Sulzbach, M.C.; Tan, H.; Estandía, S.; Gazquez, J.; Sanchez, F.; Fina, I.; Fontcuberta, J. Polarization and Resistive Switching in Epitaxial 2 nm Hf0.5Zr0.5O2 Tunnel Junctions. ACS Appl. Electron. Mater. 2021, 3, 3657–3666. [Google Scholar] [CrossRef]
- Banerjee, W.; Hwang, H. Quantized Conduction Device with 6-Bit Storage Based on Electrically Controllable Break Junctions. Adv. Electron. Mater. 2019, 5, 1900744. [Google Scholar] [CrossRef]
- Banerjee, W.; Kim, S.H.; Lee, S.; Lee, D.; Hwang, H. An Efficient Approach Based on Tuned Nanoionics to Maximize Memory Characteristics in Ag-Based Devices. Adv. Electron. Mater. 2021, 7, 2100022. [Google Scholar] [CrossRef]
- Max, B.; Pesic, M.; Slesazeck, S.; Mikolajick, T. Interplay between ferroelectric and resistive switching in doped crystalline HfO2. J. Appl. Phys. 2018, 123, 134102. [Google Scholar] [CrossRef]
- Ye, E.; Li, K.; Lu, Y.; Guo, Z.; Ni, N.; Liu, H.; Huang, Y.; Ji, H.; Wang, P. An overview of advanced methods for the characterization of oxygen vacancies in materials. Trac Trends Anal. Chem. 2019, 116, 102–108. [Google Scholar] [CrossRef]
- Tang, X.; Ding, A.; Luo, W. Surface morphology and chemical states of highly oriented PbZrO3 thin films prepared by a sol–gel process. Appl. Surf. Sci. 2001, 174, 148–154. [Google Scholar] [CrossRef]
- Chih-Chieh, H.; Tai-Chun, W.; Che-Chang, T. Forming-free sol-gel ZrOx resistive switching memory. J. Alloy. Compd. 2018, 769, 65–70. [Google Scholar]
- Rim, Y.S.; Kim, D.L.; Jeong, W.H.; Kim, H.J. Effect of Zr addition on ZnSnO thin-film transistors using a solution process. Appl. Phys. Lett. 2010, 97, 2541. [Google Scholar] [CrossRef]
- Zhou, H.; Wei, X.; Wei, W.; Ye, C.; Zhang, R.; Zhang, L.; Xia, Q.; Huang, H.; Wang, B. On the origin of enhanced resistive switching behaviors of Ti-doped HfO2 film with nitrogen annealing atmosphere. Surf. Coat. Technol. 2019, 359, 150–154. [Google Scholar] [CrossRef]
- Lim, E.W.; Ismail, R. Conduction mechanism of valence change resistive switching memory: A survey. Electronics. 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Chen, X.; Hu, W.; Wu, S.; Bao, D. Stabilizing resistive switching performances of TiN/MgZnO/ZnO/Pt heterostructure memory devices by programming the proper compliance current. Appl. Phys. Lett. 2014, 104, 043508. [Google Scholar] [CrossRef]
- Chen, X.; Hu, W.; Li, Y.; Wu, S.; Bao, D. Complementary resistive switching behaviors evolved from bipolar TiN/HfO2/Pt device. Appl. Phys. Lett. 2016, 108, 053504. [Google Scholar] [CrossRef]
- Vishwanath, S.K.; Kim, J. Resistive switching characteristics of all-solution-based Ag/TiO2/Mo-doped In2O3 devices for non-volatile memory applications. J. Mater. Chem. C 2016, 4, 10967–10972. [Google Scholar] [CrossRef]
- Kumari, C.; Varun, I.; Tiwari, S.P.; Dixit, A. Robust non-volatile bipolar resistive switching in sol-gel derived BiFeO3 thin films. Superlattices Microstruct. 2018, 120, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Lin, Q.; Zang, Z.; Wang, M.; Wangyang, P.; Tang, X.; Zhou, M.; Hu, W. Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device. ACS Appl. Mater. Interfaces 2017, 9, 6171–6176. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Xiao, L.; Zhang, S.; Wu, B.; Liu, X.; Zhou, A. Mechanism for an enhanced resistive switching effect of bilayer NiOx/TiO2 for resistive random access memory. J. Alloy. Compd. 2017, 722, 753–759. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, H.; Xia, Q.; Ye, C.; Wei, X.; Wang, J.; Zhang, L.; Zhu, L.Q. Role of Oxygen Vacancies at the TiO2/HfO2 Interface in Flexible Oxide-Based Resistive Switching Memory. Adv. Electron. Mater. 2019, 5, 1800833. [Google Scholar] [CrossRef]
- Mondal, S.; Her, J.L.; Ko, F.H.; Pan, T.M. The Effect of Al and Ni Top Electrodes in Resistive Switching Behaviors of Yb2O3-Based Memory Cells. SCS Solid State Lett. 2012, 1, 22–25. [Google Scholar] [CrossRef]
- Strukov, D.B.; Alibart, F.; Williams, R.S. Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal-oxide-metal memristors. Appl. Phys. A 2012, 107, 509–518. [Google Scholar] [CrossRef]
Device Structure | ON/OFF | Endurance Cycles | Retention Time | Year/Ref. |
---|---|---|---|---|
Ag/BaTiO3/Nb:SrTiO3 | ~200 | 40 | 104 s/85 °C | 2020/[32] |
SRO/BaTiO3-δ/SRO | ~7 | 270 | — | 2013/[33] |
Au/BaTiO3/Nb:STO | ~41 | 50 | — | 2017/[34] |
Pt/BiFeO3/SRO | ~750 | — | 103 s/RT 1 | 2013/[35] |
Al/BiFeO3/ITO | ~2.3 | 10 | — | 2020/[36] |
Ag/BiFeO3/FTO | ~12 | 100 | — | 2020/[37] |
Pt/Hf0.5Zr0.5O2/LSMO | ~210 | 104 | 103 s/RT | 2021/[38] |
Cu/Ti/HfO2/TiN | ~100 | 2000 | 10 years/200 °C | 2019/[39] |
Ag/HfO2/Pt | ~105 | 108 | >1 day/150 °C | 2021/[40] |
TiN/Sr:HfO2/Pt | ~50 | 50 | — | 2018/[41] |
Au/Bi4Ti3O12/LNO/Si | ~100 | 100 | 104 s/85 °C | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.-C.; Jiang, Y.-P.; Tang, X.-G.; Liu, Q.-X.; Li, W.-H.; Tang, Z.-H. Excellent Bipolar Resistive Switching Characteristics of Bi4Ti3O12 Thin Films Prepared via Sol-Gel Process. Nanomaterials 2021, 11, 2705. https://doi.org/10.3390/nano11102705
Zhou H-C, Jiang Y-P, Tang X-G, Liu Q-X, Li W-H, Tang Z-H. Excellent Bipolar Resistive Switching Characteristics of Bi4Ti3O12 Thin Films Prepared via Sol-Gel Process. Nanomaterials. 2021; 11(10):2705. https://doi.org/10.3390/nano11102705
Chicago/Turabian StyleZhou, He-Chun, Yan-Ping Jiang, Xin-Gui Tang, Qiu-Xiang Liu, Wen-Hua Li, and Zhen-Hua Tang. 2021. "Excellent Bipolar Resistive Switching Characteristics of Bi4Ti3O12 Thin Films Prepared via Sol-Gel Process" Nanomaterials 11, no. 10: 2705. https://doi.org/10.3390/nano11102705
APA StyleZhou, H. -C., Jiang, Y. -P., Tang, X. -G., Liu, Q. -X., Li, W. -H., & Tang, Z. -H. (2021). Excellent Bipolar Resistive Switching Characteristics of Bi4Ti3O12 Thin Films Prepared via Sol-Gel Process. Nanomaterials, 11(10), 2705. https://doi.org/10.3390/nano11102705