Mechanisms of Upconversion Luminescence of Er3+-Doped NaYF4 via 980 and 1530 nm Excitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Characterization
3. Results
3.1. Structure Characterization
3.2. Luminescent Properties
3.3. Modeling the Upconversion Luminescence Processes
3.3.1. Excitation at 980 nm
3.3.2. Excitation at 1530 nm—Weak Pumping
3.3.3. Excitation at 1530 nm—Strong Pumping
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Lu, Y.; Yang, X.; Zheng, X.; Wen, S.; Wang, F.; Vidal, X.; Zhao, J.; Liu, D.; Zhou, Z.; et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229. [Google Scholar] [CrossRef]
- Sun, T.; Li, Y.; Ho, W.L.; Zhu, Q.; Chen, X.; Jin, L.; Zhu, H.; Huang, B.; Lin, J.; Little, B.E.; et al. Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion. Nat. Commun. 2019, 10, 1811. [Google Scholar] [CrossRef]
- Deng, R.; Qin, F.; Chen, R.; Huang, W.; Hong, M.; Liu, X. Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 2015, 10, 237. [Google Scholar] [CrossRef]
- Wu, M.; Yan, L.; Wang, T.; Zhou, B.; Zhang, Q. Controlling red color-based multicolor upconversion through selective photon blocking. Adv. Funct. Mater. 2019, 29, 1804160. [Google Scholar] [CrossRef]
- Ramachari, D.; Esparza, D.; López-Luke, T.; Romero, V.H.; Perez-Mayen, L.; de la Rosa, E.; Jayasankar, C.K. Synthesis of co-doped Yb3+-Er3+:ZrO2 upconversion nanoparticles and their applications in enhanced photovoltaic properties of quantum dot sensitized solar cells. J. Alloy. Compd. 2017, 698, 433. [Google Scholar] [CrossRef]
- Yu, M.; Guo, F.; Wang, J.; Tan, F.; Li, N. Photosensitizer-loaded pH-responsive hollow Gold nanospheres for single light-induced photothermal/photodynamic therapy. ACS Appl. Mater. Inter. 2015, 7, 17592. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Deng, R.; Tian, J.; Zong, Y.; Jin, D.; Liu, X. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 2014, 136, 4893. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, R.; Yao, C.; Li, X.; Wang, C.; Zhang, X.; Xu, C.; Zeng, A.; Zhao, D.; Zhang, F. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat. Commun. 2015, 6, 6938. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.B.; Smith, S.J.; May, P.S.; Berry, M.T. Revisiting the NIR-to-visible upconversion mechanism in beta-NaYF4:Yb3+,Er3+. J. Phys. Chem. Lett. 2014, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Ye, W.; Jiao, X.; Yu, L.; Liu, Y.; Liu, X. Efficient upconversion fluorescence in NaYF4:Yb3+,Er3+/mNaYF4 multilayer core-shell nanoparticles. J. Alloy. Compd. 2018, 763, 216. [Google Scholar] [CrossRef]
- Arppe, R.; Hyppanen, I.; Perala, N.; Peltomaa, R.; Kaiser, M.; Wurth, C.; Christ, S.; Resch-Genger, U.; Schaferling, M.; Soukka, T. Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: The role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 2015, 7, 11746. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Gao, N.; Deng, R.; Sun, Q.; Xu, Q.H.; Liu, X. Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles. J. Am. Chem. Soc. 2013, 135, 12608. [Google Scholar] [CrossRef]
- Hu, F.; Liu, X.; Chen, R.; Liu, Y.; Mai, Y.; Maalej, R.; Yang, Y. Judd-Ofelt parameters of the up-conversion phosphors: Er3+ doped BaGd2ZnO5/PMMA and NaYF4/PMMA. J. Rare Earths 2017, 35, 964. [Google Scholar] [CrossRef]
- Ma, Y.R.; Qiu, P.S.; Xu, D.F.; Lin, J.R.; Tang, Y.X.; Wang, F.F.; He, X.Y.; Zhou, Z.Y.; Sun, N.X.; Zhang, X.Y.; et al. Controllable synthesis and upconversion luminescence of NaYF4:Yb3+,Er3+ nanocrystals. Ceram. Int. 2015, 41, S713. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Chen, L.; Li, J.; Wang, Z.; Zhang, J.H.; Zhang, L.G.; Luo, Y.S.; Wang, X.J. Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe3+ doping in NaYF4:Yb, Er nanocrystals. Nanoscale 2015, 7, 14752. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Dong, N.; Yin, M.; Zhang, W.P.; Lou, L.R.; Xia, S.D. Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals. J. Phys. Chem. B 2004, 108, 19205. [Google Scholar] [CrossRef]
- Gao, W.; Kong, X.Q.; Han, Q.Y.; Dong, J.; Zhang, W.W.; Zhang, B.; Yan, X.W.; Zhang, Z.L.; He, E.J.; Zheng, H.R. Highly efficient multi-colour upconversion emission of Yb3+/Er3+, Ho3+ codoped single LiYF4 octahedral microparticle. J. Lumin. 2018, 196, 187. [Google Scholar] [CrossRef]
- Noculak, A.; Podhorodecki, A. Size and shape effects in beta-NaGdF4:Yb3+,Er3+ nanocrystals. Nanotechnology 2017, 28, 175706. [Google Scholar] [CrossRef]
- Niemz, M.H. Laser-Tissue Interactions Fundamentals and Applications; Science Press: Beijing, China, 2005. [Google Scholar]
- Zhan, Q.Q.; Qian, J.; Liang, H.J.; Somesfalean, G.; Wang, D.; He, S.L.; Zhang, Z.G.; Andersson-Engels, S. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 2011, 5, 3744. [Google Scholar] [CrossRef]
- Shen, J.; Chen, G.Y.; Vu, A.M.; Fan, W.; Bilsel, O.S.; Chang, C.C.; Han, G. Engineering the upconversion nanoparticle excitation wavelength: Cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv. Opt. Mater. 2013, 1, 644. [Google Scholar] [CrossRef]
- Zhong, Y.T.; Tian, G.; Gu, Z.J.; Yang, Y.J.; Gu, L.; Zhao, Y.L.; Ma, Y.; Yao, J.N. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles. Adv. Mater. 2014, 26, 2831. [Google Scholar] [CrossRef]
- Wen, H.; Zhu, H.; Chen, X.; Hung, T.F.; Wang, B.; Zhu, G.; Yu, S.F.; Wang, F. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 13419. [Google Scholar] [CrossRef]
- Liu, L.; Lu, K.L.; Xu, L.; Tang, D.Y.; Liu, C.; Shahzad, M.K.; Yan, D.; Khan, F.; Zhao, E.; Li, H.Y. Highly efficient upconversion luminescence of Er heavily doped nanocrystals through 1530 nm excitation. Opt. Lett. 2019, 44, 711. [Google Scholar] [CrossRef]
- Jensen, T.; Diening, A.; Huber, G.; Chai, B. Investigation of diode-pumped 2.8 μm Er:LiYF4 lasers with various doping levels. Opt. Lett. 1996, 21, 585. [Google Scholar] [CrossRef]
- Wetter, N.; Deana, A.; Ranieri, I.; Gomes, L.; Baldochi, S. Influence of excited-state energy upconversion on pulse shape in quasi-continous-wave diode-pumped Er:LiYF4 lasers. IEEE J. Quantum Elect. 2010, 46, 99. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, T.; Xing, M.M.; Fu, Y.; Peng, Y.; Luo, X.X. Up-conversion luminescence of Y2O3:Yb, Er under 1.55 μm excitation. Ceram. Int. 2015, 41, 259. [Google Scholar] [CrossRef]
- Ivanova, S.; Pellé, F.; Tkachuk, A.; Joubert, M.F.; Guyot, Y.; Gapontzev, V.P. Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters. J. Lumin. 2008, 128, 914. [Google Scholar] [CrossRef]
- Yin, X.M.; Wang, H.; Xing, M.M.; Fu, Y.; Tian, Y.; Luo, X.X. Simple method for simultaneously achieving red and green up-conversion luminescence. RSC Adv. 2017, 7, 50264. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.Z.; Zhao, D.; Zhang, D.S.; Liu, N.; Qin, W.P. Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation. Opt. Lett. 2010, 15, 2442. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Ohulchanskyy, T.Y.; Kachynski, A.; Agren, H.; Prasad, P.N. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm. ACS Nano 2011, 5, 4981. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.B. Study of up-conversion luminescence of Er:ZBLAN excited by 1520 nm laser. Opt. Commun. 2004, 242, 565. [Google Scholar]
- Ivanova, S.; Pellé, F. Strong 1.53 mm to NIR-VIS-UV upconversionin Er-doped fluoride glass for high-efficiency solar cells. J. Opt. Soc. B 2009, 29, 1930. [Google Scholar] [CrossRef]
- Yu, W.G.; Tian, Y.; Xing, M.M.; Fu, Y.; Zhang, H.; Luo, X.X. Up-conversion luminescence of NaY(WO4)2:Yb, Er under 1550 and 980 nm excitation. Mater. Res. Bull. 2016, 80, 223. [Google Scholar] [CrossRef]
- Jiang, T.; Xing, M.M.; Tian, Y.; Fu, Y.; Yin, X.M.; Wang, H.; Feng, X.; Luo, X.X. Upconversion luminescence of Er2Mo4O15 under 980 and 1550 nm excitation. RSC Adv. 2016, 6, 109278. [Google Scholar] [CrossRef]
- Maciel, G.S.; Rakov, N.; Fokine, M.; Carvalho, I.C.S.; Pinheiro, C.B. Strong upconversion from Er3Al5O12 ceramic powders prepared by low temperature direct combustion synthesis. Appl. Phys. Lett. 2006, 89, 08110901. [Google Scholar] [CrossRef]
- Kumar, G.A.; Pokhrel, M.; Sardar, D.K. Intense visible and near infrared upconversion in M2O2S:Er (M = Y, Gd, La) phosphor under 1550 nm excitation. Mater. Lett. 2012, 68, 395. [Google Scholar] [CrossRef]
- Martín-Rodríguez, R.; Rabouw, F.T.; Trevisani, M.; Bettinelli, M.; Meijerink, A. Upconversion dynamics in Er3+-doped Gd2O2S: Influence of excitation power, Er3+ concentration, and defects. Adv. Opt. Mater. 2015, 3, 558. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xing, M.M.; Luo, X.X.; Zhou, X.L.; Fu, Y.; Jiang, T.; Peng, Y.; Ma, Y.B.; Duan, X.L. Upconversion emission colour modulation of Y2O2S: Yb, Er under 1.55 mm and 980 nm excitation. J. Alloys Compd. 2014, 587, 344. [Google Scholar] [CrossRef]
- Lyapin, A.A.; Ryabochkina, P.A.; Gushchin, S.V.; Kuznetsov, S.V.; Chernov, M.V.; Proydakova, V.Y.; Voronov, V.V.; Fedorov, P.P. Upconversion luminescence of fluoride phosphors SrF2:Er,Yb under laser excitation at 1.5 µm. Opt. Spectrosc. 2018, 125, 537. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Zhong, H.; Xu, S.; Cheng, L.; Sun, J.; Zhang, J.; Li, L.; Chen, B. Up-conversion luminescence, temperature sensing properties and laser-induced heating effect of Er3+/Yb3+ co-doped YNbO4 phosphors under 1550 nm excitation. Sci. Rep. 2018, 8, 5736. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.T.; May, P.S. Disputed mechanism for NIR-to-red upconversion luminescence in NaYF4:Yb3+,Er3+. J. Phys. Chem. A 2015, 119, 9805. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, X.; Liu, F.; Xiao, L.; Chen, Y.; Liu, L. Upconversion mechanisms of Er3+:NaYF4 and thermal effects induced by incident photon on the green luminescence. J. Lumin. 2016, 175, 35. [Google Scholar] [CrossRef]
- Yang, D.; Chen, D.; He, H.; Pan, Q.; Xiao, Q.; Qiu, J.; Dong, G. Controllable phase transformation and mid-infrared emission from Er3+-doped hexagonal-/cubic-NaYF4 nanocrystals. Sci. Rep. 2016, 6, 29871. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yakovliev, A.; Ohulchanskyy, T.Y.; Wu, L.; Zeng, S.; Han, X.; Qu, J.; Chen, G. Effcient erbium-sensitized core/shell nanocrystals for short wave infrared bioimaging. Adv. Opt. Mater. 2018, 6, 1800690. [Google Scholar] [CrossRef]
- Wang, W.; Feng, Z.; Li, B.; Chang, Y.; Li, X.; Yan, X.; Chen, R.; Yu, X.; Zhao, H.; Lu, G.; et al. Er3+ self-sensitized nanoprobes with enhanced 1525 nm downshifting emission for NIR-IIb in vivo bio-imaging. J. Mater. Chem. B 2021, 9, 2899. [Google Scholar] [CrossRef] [PubMed]
- Bondzior, B.; Stefanska, D.; Vu, T.H.Q.; Miniajluk-Gawei, N.; Deren, P.J. Red luminescence with controlled rise time in La2MgTiO6:Eu3+. J. Alloy. Compd. 2021, 852, 157074. [Google Scholar] [CrossRef]
- Liu, L.; Lu, K.; Yan, D.; Zhao, E.; Li, H.; Shahzad, M.K.; Zhang, Y. Concentration dependent optical transition probabilities in ultra-small upconversion nanocrystals. Opt. Express 2018, 26, 23471. [Google Scholar] [CrossRef] [PubMed]
- Pollnau, M.; Gamelin, D.R.; Lüthi, S.R.; Güdel, H.U. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337. [Google Scholar] [CrossRef]
- Suyver, J.F.; Aebischer, A.; Garcia-Revilla, S.; Gerner, P.; Güdel, H.U. Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B 2005, 71, 125123. [Google Scholar] [CrossRef]
- Mukhuti, A.; Adusumalli, V.N.K.B.; Raj, R.K.; Bansal, B.; Mahalingam, V. Competition between two- and three-photon upconversion in Er3+-doped microcrystals. J. Lumin. 2020, 227, 117542. [Google Scholar] [CrossRef]
- Yang, J.X.; Li, D.S.; Li, G.; Pun, E.Y.B.; Lin, H. Photon quantification in Ho3+/Yb3+ co-doped opto-thermal sensitive fluotellurite glass phosphor. Appl. Opt. 2020, 59, 5752. [Google Scholar] [CrossRef] [PubMed]
i | Ex = 980 nm | Ex = 1530 nm | ||||||
---|---|---|---|---|---|---|---|---|
Transition | λ (nm) | nReal Pl→Ph | nIdeal Pl→Ph | Transition | λ (nm) | nReal Pl→Ph | nIdeal Pl→Ph | |
2 | 4I9/2→4I15/2 | 807 | 1.6→1.2 | 2→1 | 4I9/2→4I15/2 | 807 | 1.8→1.1 | 2→1 |
4F9/2→4I15/2 | 654 | 1.4→1.3 | ||||||
4S3/2→4I15/2 | 541 | 1.4→1.1 | ||||||
4F7/2→4I15/2 | 490 | NA→1.7 | ||||||
3 | 4F5/2→4I15/2 | 452 | NA→1.4 | 3→2 | 4F9/2→4I15/2 4S3/2→4I15/2 | 654 541 | 2.1→1.2 2.5→1.3 | 2→1.5 3→1.5 |
2H9/2→4I15/2 | 408 | 2.3→1.5 | ||||||
4G11/2→4I15/2 | 382 | 2.4→1.7 | ||||||
4 | 4F7/2→4I15/2 | 490 | NA→1.9 | 4→2 | ||||
4F5/2→4I15/2 | 452 | NA→1.7 | ||||||
2H9/2→4I15/2 | 408 | 3.7→1.7 | ||||||
5 | 4G11/2→4I15/2 | 382 | 5.0→2.0 | 5→2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhou, Z.; Zhang, S.; Zhao, E.; Ren, J.; Liu, L.; Zhang, J. Mechanisms of Upconversion Luminescence of Er3+-Doped NaYF4 via 980 and 1530 nm Excitation. Nanomaterials 2021, 11, 2767. https://doi.org/10.3390/nano11102767
Liu Y, Zhou Z, Zhang S, Zhao E, Ren J, Liu L, Zhang J. Mechanisms of Upconversion Luminescence of Er3+-Doped NaYF4 via 980 and 1530 nm Excitation. Nanomaterials. 2021; 11(10):2767. https://doi.org/10.3390/nano11102767
Chicago/Turabian StyleLiu, Yu, Ziwen Zhou, Shaojian Zhang, Enming Zhao, Jing Ren, Lu Liu, and Jianzhong Zhang. 2021. "Mechanisms of Upconversion Luminescence of Er3+-Doped NaYF4 via 980 and 1530 nm Excitation" Nanomaterials 11, no. 10: 2767. https://doi.org/10.3390/nano11102767
APA StyleLiu, Y., Zhou, Z., Zhang, S., Zhao, E., Ren, J., Liu, L., & Zhang, J. (2021). Mechanisms of Upconversion Luminescence of Er3+-Doped NaYF4 via 980 and 1530 nm Excitation. Nanomaterials, 11(10), 2767. https://doi.org/10.3390/nano11102767